使用R语言对影响大学录取分数线因素进行分析

在这里,作为补充知识,为大家讲一下R语言怎么对数据进行分析。现目前,对于我们而言,选择一所合适的大学非常重要,针对于此,我对影响大学平均录取分数线因素进行了分析。

首先我们看看文件里面有些什么属性

0e38f5528f5f4f03bbcf3d351842fb6f.png

 然后我们进行读取文件

x<-read.csv("C:/Users/chaeli/Documents/chapter3-data/data/ch11data.csv",head=T)
x

将有录取平均线的院校作为训练样本集
train<-x[which(x$平均线!="无"),]  
train

将没有录取平均线的院校作为验证集

test<-x[which(x$平均线=="无"),]   

test

将训练样本集中的平均线转换为数值型

train$平均线<-as.numeric(as.character(train$平均线))  

查看训练样本集中的平均线情况

summary(train$平均线) 

各录取平均线院校的数量,横轴为录取平均分,纵轴为院校的数量

a<-as.data.frame(table(train$平均线))  

plot(a,xlab="录取平均分",ylab="院校的数量")

绘制院校的分布柱状图,学习训练集中的不同类型院校的数量

b<-as.data.frame(table(train$类型))

barplot(b$Freq,names.arg=b$Var1,col=rainbow(12),xlab="院校类型",ylab="院校的数量",main="院校分布")

将学校按照985和非985进行分类,并绘制分布柱状图

c<-as.data.frame(table(x$是否985))

barplot(c$Freq,names.arg=c$Var1,xlab="是否为985院校",ylab="院校的数量")

将院校重点学科数量绘制成散点图

d1<-as.data.frame(table(x$重点学科))

plot(d1,xlab="重点学科",yla

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值