#include <iostream>
#include <vector>
using namespace std;
// 判断第k个皇后是否能放在(i,j)位置上
bool isValid(vector<vector<int>>& board, int k, int i, int j) {
int n = board.size();
// 检查列
for (int r = 0; r < k; ++r) {
if (board[r][j] == 1) return false;
}
// 检查左上方对角线
for (int r = k - 1, c = j - 1; r >= 0 && c >= 0; --r, --c) {
if (board[r][c] == 1) return false;
}
// 检查右上方对角线
for (int r = k - 1, c = j + 1; r >= 0 && c < n; --r, ++c) {
if (board[r][c] == 1) return false;
}
return true;
}
// 回溯搜索
void backtrack(vector<vector<int>>& board, int k, int& count) {
int n = board.size();
if (k == n) { // 找到一组解
++count;
return;
}
for (int j = 0; j < n; ++j) {
if (isValid(board, k, k, j)) { // 第k个皇后可以放在第k行第j列
board[k][j] = 1;
backtrack(board, k + 1, count); // 递归搜索下一行
board[k][j] = 0;
}
}
}
int solveNQueens(int n) {
vector<vector<int>> board(n, vector<int>(n, 0)); // 初始化棋盘
int count = 0;
backtrack(board, 0, count); // 从第0行开始搜索
return count;
}
int main() {
int n;
cin >> n;
int count = solveNQueens(n);
cout << count << endl;
return 0;
}
n皇后问题 C++解决
最新推荐文章于 2024-11-09 13:08:09 发布
该代码示例展示了如何使用C++编程解决经典的N皇后问题,通过回溯算法来放置皇后,确保没有两个皇后在同一行、同一列或同一对角线上。程序定义了isValid函数检查当前位置是否安全,以及backtrack函数进行递归搜索解。
摘要由CSDN通过智能技术生成