重塑矩阵和杨辉三角

题目

在 MATLAB 中,有一个非常有用的函数 reshape ,它可以将一个 m x n 矩阵重塑为另一个大小不同(r x c)的新矩阵,但保留其原始数据。

给你一个由二维数组 mat 表示的 m x n 矩阵,以及两个正整数 rc ,分别表示想要的重构的矩阵的行数和列数。

重构后的矩阵需要将原始矩阵的所有元素以相同的 行遍历顺序 填充。

如果具有给定参数的 reshape 操作是可行且合理的,则输出新的重塑矩阵;否则,输出原始矩阵。

示例

输入:mat = [[1,2],[3,4]], r = 1, c = 4

输出:[[1,2,3,4]]

输入:mat = [[1,2],[3,4]], r = 2, c = 4

输出:[[1,2],[3,4]]

解法:二维数组映射成一维数组

分析

m行n列的二维数组每个元素(i,j)对应[0,mn)数列中每一个位置,(x,j)i*n+j

同样将整数x映射回m行n列的二维数组

python代码

class Solution:
    def matrixReshape(self, mat: List[List[int]], r: int, c: int) -> List[List[int]]:
        list=[]
        for i in range(len(mat)):
            for j in range(len(mat[i])):
                list.append(mat[i][j])
        mat1=[]
        if len(list)%r==0:
            col=len(list)//r
            for i in range(r):
                x=[]
                for j in range(col):
                    x.append(list[i*col+j])
                mat1.append(x)
        else:
            return mat
        return mat1

题目

给定一个非负整数 numRows生成「杨辉三角」的前 numRows 行。

在「杨辉三角」中,每个数是它左上方和右上方的数的和。

示例

示例 1:

输入: numRows = 5

输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]

示例 2:

输入: numRows = 1

输出: [[1]]

  • 1 <= numRows <= 30

题解

分析

初始列表LS0=[1]

LS1=[1,1]

循环终止条件for j in range(2,numRows)

对每一次循环产生的列表ls有

ls[0]=1

for i in range(1,numRows-1):

ls[i]=LS1[i]+LS1[i-1]

ls[numRows-1]=1

LS1=ls

ls[numRows//2]=i

class Solution:
    def generate(self, numRows: int) -> List[List[int]]:
        if numRows==1:
            return [[1]]
        ans=[]
        x0=[1]
        ans.append(x0)
        LS=[1,1]
        ans.append(LS)
        
        for i in range(2,numRows):
            ls=[]
            ls.append(1)
            for j in range(1,i):
                ls.append(LS[j-1]+LS[j])
            ls.append(1)
            LS=ls
            ans.append(LS)
        return ans

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值