题目
在 MATLAB 中,有一个非常有用的函数 reshape ,它可以将一个 m x n 矩阵重塑为另一个大小不同(r x c)的新矩阵,但保留其原始数据。
给你一个由二维数组 mat 表示的 m x n 矩阵,以及两个正整数 r 和 c ,分别表示想要的重构的矩阵的行数和列数。
重构后的矩阵需要将原始矩阵的所有元素以相同的 行遍历顺序 填充。
如果具有给定参数的 reshape 操作是可行且合理的,则输出新的重塑矩阵;否则,输出原始矩阵。
示例
输入:mat = [[1,2],[3,4]], r = 1, c = 4
输出:[[1,2,3,4]]
输入:mat = [[1,2],[3,4]], r = 2, c = 4
输出:[[1,2],[3,4]]
解法:二维数组映射成一维数组
分析
m行n列的二维数组每个元素(i,j)对应[0,mn)数列中每一个位置,(x,j)i*n+j
同样将整数x映射回m行n列的二维数组
python代码
class Solution:
def matrixReshape(self, mat: List[List[int]], r: int, c: int) -> List[List[int]]:
list=[]
for i in range(len(mat)):
for j in range(len(mat[i])):
list.append(mat[i][j])
mat1=[]
if len(list)%r==0:
col=len(list)//r
for i in range(r):
x=[]
for j in range(col):
x.append(list[i*col+j])
mat1.append(x)
else:
return mat
return mat1
题目
给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。
在「杨辉三角」中,每个数是它左上方和右上方的数的和。
示例
示例 1:
输入: numRows = 5
输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
示例 2:
输入: numRows = 1
输出: [[1]]
1 <= numRows <= 30
题解
分析
初始列表LS0=[1]
LS1=[1,1]
循环终止条件for j in range(2,numRows)
对每一次循环产生的列表ls有
ls[0]=1
for i in range(1,numRows-1):
ls[i]=LS1[i]+LS1[i-1]
ls[numRows-1]=1
LS1=ls
ls[numRows//2]=i
class Solution:
def generate(self, numRows: int) -> List[List[int]]:
if numRows==1:
return [[1]]
ans=[]
x0=[1]
ans.append(x0)
LS=[1,1]
ans.append(LS)
for i in range(2,numRows):
ls=[]
ls.append(1)
for j in range(1,i):
ls.append(LS[j-1]+LS[j])
ls.append(1)
LS=ls
ans.append(LS)
return ans