数据治理的范围和原则
数据治理的范围
数据治理工作是在国际协作、国家治理、行业监督和企业管理中,为了提升 数据的质量、降低数据管理成本、保障数据安全和管控数据风险,针对公共数据、 政府数据、企业数据和个人数据的采集、存储、应用和流通等一系列环节,利用 各种工具方法进行有效管理,主要包括法律法规、行业标准、企业制度、技术工 具等。
数据治理是带有强烈目的的实践活动,以数据为核心对象,涉及政府、企业、 个人等各类参与主体,覆盖数据全生命周期中的各种过程和状态,利用手段和活 动释放、保护数据的价值。为明确数据治理的范围,利用数据治理“4W1H”模型 进行说明,如图 1 所示。遵循数据治理的概念内涵及标准化的自身含义,数据治 理标准化是以数据为标准化对象,为政府、企业、个人提供服务,规范各环节活 动、平台工具使用、安全保护措施、数据交易流通,保障各类数据全生命周期的 有序运转,促进数据治理的愿景、规划、决策、要求转变为行动、能力和优势。
图 1 数据治理“4W1H”模型
数据治理的原则
战略重视、组织保障。规划数据治理中长期路线图、明确职责分工、建立数 据治理组织架构,监督各项任务执行情况、解决组织间矛盾及冲突、及时调整规 划内容。
责任共担、协调配合。明确各部门的职责及任务,制定工作原则,明确各自 任务及边界,建立配合机制,共同确保数据治理整体任务的实现和目标的达成。
业务驱动、问题导向。基于业务活动中发现的数据不标准、不一致、不准确、 不可信、用数困难等问