牛客小白月赛69 E、F-等腰三角形(思维)

该程序计算给定坐标中能组成等腰三角形的组合数,排除三点共线的情况。通过计算两点间距离并存储频率,以及检查直线上的点,得出最终结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:登录—专业IT笔试面试备考平台_牛客网

题目描述

给定 nnn 个坐标,求其中 333 个坐标能表示一个等腰三角形的组数。
 

三点共线不算三角形,等边三角形为特殊的等腰三角形。

输入描述:

第一行一个整数 n(0≤n≤3000)n(0\le n\le3000)n(0≤n≤3000)。
其后 nnn 行每行两个整数 xi,yi(−500≤xi,yi≤500)x_i,y_i(-500 \le x_i,y_i \le 500)xi​,yi​(−500≤xi​,yi​≤500),保证没有重复坐标。

输出描述:

一行一个整数答案。

示例1

输入

4
1 1
-1 1
-1 -1
1 -1

输出

4

由于不存在格点等边三角形,故只需考虑等腰三角形。考虑将每个点假设为等腰三角形的顶点,开一个数组cnt保存其与其他点的距离,记录其出现的次数,开一个vis数组来表示此点是否出现在输入中,以此来筛选出三点共线的情况。其中有一个细节,由于点的坐标可能为负数且最大的负数为-1500,故采取加1500来保证为非负数。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
int cnt[2000010];
int vis[3010][3010];
struct p{
    int x,y;
}a[3010];
int dis(int i,int j)
{
    return (a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y);
}
int main()
{
    cin>>n;
    ll res=0;
    ll line=0;
    for(int i=0;i<n;i++)
    {
        cin>>a[i].x>>a[i].y;
        vis[a[i].x+1500][a[i].y+1500]=1;
    }
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            if(i==j)
                continue;
            res+=cnt[dis(i,j)];
            cnt[dis(i,j)]++;
            if(vis[a[i].x-(a[j].x-a[i].x)+1500][a[i].y-(a[j].y-a[i].y)+1500])
                line++;
        }
        for(int j=0;j<n;j++)
        {
            if(j==i)
                continue;
            cnt[dis(i,j)]=0;
        }
    }
    cout<<res-line/2<<endl;//由于每个三点共线都会被考虑两次,故需要除以2
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值