题目描述
给定 nnn 个坐标,求其中 333 个坐标能表示一个等腰三角形的组数。
三点共线不算三角形,等边三角形为特殊的等腰三角形。
输入描述:
第一行一个整数 n(0≤n≤3000)n(0\le n\le3000)n(0≤n≤3000)。 其后 nnn 行每行两个整数 xi,yi(−500≤xi,yi≤500)x_i,y_i(-500 \le x_i,y_i \le 500)xi,yi(−500≤xi,yi≤500),保证没有重复坐标。
输出描述:
一行一个整数答案。
示例1
输入
4 1 1 -1 1 -1 -1 1 -1
输出
4
由于不存在格点等边三角形,故只需考虑等腰三角形。考虑将每个点假设为等腰三角形的顶点,开一个数组cnt保存其与其他点的距离,记录其出现的次数,开一个vis数组来表示此点是否出现在输入中,以此来筛选出三点共线的情况。其中有一个细节,由于点的坐标可能为负数且最大的负数为-1500,故采取加1500来保证为非负数。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
int cnt[2000010];
int vis[3010][3010];
struct p{
int x,y;
}a[3010];
int dis(int i,int j)
{
return (a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y);
}
int main()
{
cin>>n;
ll res=0;
ll line=0;
for(int i=0;i<n;i++)
{
cin>>a[i].x>>a[i].y;
vis[a[i].x+1500][a[i].y+1500]=1;
}
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(i==j)
continue;
res+=cnt[dis(i,j)];
cnt[dis(i,j)]++;
if(vis[a[i].x-(a[j].x-a[i].x)+1500][a[i].y-(a[j].y-a[i].y)+1500])
line++;
}
for(int j=0;j<n;j++)
{
if(j==i)
continue;
cnt[dis(i,j)]=0;
}
}
cout<<res-line/2<<endl;//由于每个三点共线都会被考虑两次,故需要除以2
return 0;
}