一文弄懂快速选择算法(Quickselect)

以下是一个使用C++实现的 快速选择算法(Quickselect) 示例,用于在未排序数组中高效查找第k小的元素,基于分治策略并优化了快速排序的分区过程:

#include <iostream>
#include <vector>
#include <ctime>
using namespace std;

// 分区函数(Lomuto分区方案)
int partition(vector<int>& nums, int left, int right) {
    int pivot = nums[right];  // 选择最后一个元素作为基准
    int i = left - 1;         // 指向小于基准的区域的右边界
    
    for (int j = left; j < right; ++j) {
        if (nums[j] <= pivot) {
            swap(nums[++i], nums[j]);  // 将较小元素交换到左侧
        }
    }
    swap(nums[i+1], nums[right]);      // 将基准放到正确位置
    return i + 1;                      // 返回基准的最终位置
}

// 快速选择递归实现
int quickSelect(vector<int>& nums, int left, int right, int k) {
    if (left == right) return nums[left];  // 基准情形
    
    // 随机选择基准优化(避免最坏情况)
    int random = left + rand() % (right - left);
    swap(nums[random], nums[right]);
    
    int pivotIndex = partition(nums, left, right);
    
    if (k == pivotIndex) {
        return nums[k];
    } else if (k < pivotIndex) {
        return quickSelect(nums, left, pivotIndex - 1, k);
    } else {
        return quickSelect(nums, pivotIndex + 1, right, k);
    }
}

int main() {
    srand(time(0));  // 初始化随机种子
    vector<int> nums = {3, 2, 1, 5, 6, 4};  // 测试数组
    int k = 2;  // 查找第2小的元素(索引从0开始)

    int result = quickSelect(nums, 0, nums.size() - 1, k);
    
    cout << "数组元素:";
    for (int num : nums) cout << num << " ";
    cout << "\n第" << k+1 << "小的元素是:" << result << endl;

    return 0;
}

算法核心思想演示(图书馆找书场景)

想象场景:图书馆有未排序的书堆(数组),需要快速找到第k薄的书(第k小元素),但不想花时间整理全部书籍

  1. 随机抽检

    • 随便选一本书(随机基准)作为厚度参考
    • 将更薄的书放左边,较厚的放右边(分区操作)
  2. 智能筛选

    • 若目标书在左边区域:只关注左边
    • 若在右边区域:只关注右边
    • 重复直到找到目标
示例过程(k=2即第3小):
初始书堆:[3,2,1,5,6,4] → 随机选4号书(厚度6)  
分区后:[3,2,1,5,4 |6] → 目标在左区  
继续处理左区[3,2,1,5,4] → 随机选2号书(厚度1)  
分区后:[1 |2,3,5,4] → 目标在右区  
最终找到第3小元素:3

算法三步走

  1. 随机基准选择
    swap(nums[random], nums[right]) 避免最坏时间复杂度

  2. 分区重组

    • 基准左侧全为更小元素
    • 基准右侧全为更大元素
  3. 递归筛选

    • 根据基准位置决定处理左/右分区
    • 直到基准位置等于k索引

执行结果

数组元素:3 2 1 5 6 4 
第3小的元素是:3

算法特性

特性说明
时间复杂度平均O(n),最坏O(n²)(随机优化后概率极低)
空间复杂度O(1) 原地操作
优势比完全排序快,无需额外内存
适用场景大数据量Top K问题、中位数计算

关键代码解析

  1. 随机基准选择

    int random = left + rand() % (right - left);
    swap(nums[random], nums[right]);
    

    通过随机化避免有序数组的最坏情况

  2. 递归筛选逻辑

    if (k == pivotIndex) return nums[k];  // 找到目标
    else if (k < pivotIndex) ...        // 处理左区
    else ...                            // 处理右区
    
  3. 分区优化
    使用Lomuto分区方案,比Hoare方案更易理解


实际应用场景

  1. 成绩分析:快速找到年级第100名的分数
  2. 数据监控:实时获取传感器数据的中位数
  3. 金融系统:确定交易金额的百分位数
  4. 机器学习:选择特征值的中位数进行数据分割
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值