深度学习——苹果新鲜度识别

本文详细介绍了使用YOLOv8模型进行苹果新鲜度检测的项目,包括环境配置、数据集划分、模型训练和评估过程,以及YOLOv8的网络定义和Loss函数。结果显示,模型在苹果新鲜度检测上表现出高精度和快速性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本项目使用yolov8模型作为目标检测的模型

目录

项目背景:

一、项目需求:

二、项目实现:

(一)流程介绍:

1、YOLOv8环境配置:

(二)、训练数据集的准备工作

1、准备好数据集:

2、划分数据集

3、训练模型

4、预测模型

三、检测结果与思考:

1、训练阶段:

2、训练结束:

训练过程视频:

四、知识体系:  

(一)、网络定义:

(二)、输出定义:

(三)、Loss函数定义:

五、模型结构设计

六、模型推理过程

七、小总结:

项目背景:

        近年来,随着全球经济的发展,水果消费市场规模不断扩大,水果种类也日益丰富。水果检测与识别技术在农业生产、仓储物流、超市零售等领域具有重要的应用价值。传统的水果检测与识别方法主要依赖于人工识别,这种方法在一定程度上受到人力成本、识别效率和准确性等方面的限制。因此,开发一种高效、准确的自动化水果检测与识别系统具有重要的研究意义和实际价值。

        在本博文中,我们提出了一种基于深度学习的苹果新鲜度检测与识别系统,该系统采用YOLOv8算法对苹果进行检测和识别,实现对图片中的苹果进行准确识别。

一、项目需求:

对苹果外形进行检测与识别,系统将识别出图片中苹果的新鲜程度并显示相应的类别。

二、项目实现:

通过调研,本项目最终使用yolov8模型作为目标检测的模型, YOLOv8 旨在快速、准确且易于使用,使其成为广泛的物体检测、图像分割和图像分类任务的极佳选择。

(一)流程介绍:
1、YOLOv8环境配置:

首先去自己的anaconda的安装的envs(虚拟环境),在导航栏输入cmd,进入命令窗口。

确保python>=3.7;CUDA>=10.1,PYtorch>=1.7

(1)、创建一个虚拟环境

conda create -n torch1.12.1 python=3.8.8

(2)、激活刚建的虚拟环境

activate torch1.12.1 

(3)、到官方网站下载yolo模型 ,下载好后解压,里面有个文件requirements.txt 

 https://github.com/ultralytics/ultralytics

安装一个整体包:

pip install -r .\requirements.txt 

直接按照路径会有问题,找到自己 requirements.txt 文件路径,我这里是pip install -r D:\ultralytics-main\ultralytics-main\requirements.txt

(4)、然后安装ultralytics ,这是必须的。可以用镜像地址。

pip install ultralytics -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com

(5)、安装下载好包,接下来就是验证:

 yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg' show=True save=True 

(二)、训练数据集的准备工作
1、准备好数据集:

我们选择的苹果数据集包含图片数量978张

2、划分数据集

我们导出的数据文件结构

标签类别包含两类:fresh_apple和rotten_apple;

├── yolov8_dataset
	└── train
		└── images (folder including all training images)
		└── labels (folder including all training labels)
	└── test
		└── images (folder including all testing images)
		└── labels (folder including all testing labels)
	└── val
		└── images (folder including all testing images)
		└── labels (folder includi
### 启用人脸识别功能 要在 Windows Hello 中启用人脸识别功能,需满足硬件条件并完成一系列配置操作。以下是具体说明: #### 硬件需求 要使用 Windows Hello人脸识别功能,必须配备支持此功能的硬件设备,例如 Intel 3D RealSense 摄像头其他经过微软认证的同类设备[^2]。 #### 配置步骤 1. **检查硬件兼容性** 确认计算机已安装所需的人脸识别硬件,并确保其正常工作。如果不确定硬件是否受支持,可以查阅制造商文档访问设备管理器进行确认。 2. **启用 PIN ** 在设置人脸识别前,需要为当前用户账户创建一个 PIN 。这是为了在生物识别不可用时提供备用身份验证方式。如果尚未设置,则需要先为账户创建密。 3. **进入设置界面** 打开“设置”应用 (`Win + I`) 并导航到 `账户` -> `登录选项`。在此页面上找到“Windows Hello 面部识别”,点击“设置”按钮以启动配置向导。 4. **执行校准过程** 根据屏幕提示完成面部扫描。通常会要求用户转动头部以便摄像头捕捉多角度图像,从而提高识别精度。 5. **测试功能** 完成上述步骤后尝试锁屏再解锁电脑,观察是否能够顺利通过刷脸实现自动登录。 --- ### 解决人脸识别失效问题 当遇到 Win11 人脸识别无法正常使用的情况时,可按照以下建议排查原因: #### 方法一:更新驱动程序 过时或者损坏的驱动可能导致该功能异常运作。前往主板厂商官网下载最新版本的相机驱动包重新安装;也可以利用 Device Manager 自动在线检索可用升级项[^3]。 #### 方法二:调整隐私权限 部分情况下可能是由于系统层面的安全策略阻止了应用程序获取必要的传感器数据所致。依次打开路径:“控制面板”-> “用户帐户” -> “更改用户账户控制设置”,降低 UAC 提示级别至最低状态暂时看看效果如何变化。 #### 方法三:重置 Windows Hello 数据库 有时存储于本地数据库中的模板文件遭到破坏也会引发此类现象。运行命令提示符 (管理员模式),键入 netplwiz 删除所有关联记录后再重建即可恢复初始状况。 ```cmd netplwiz ``` #### 方法四:重启服务组件 停止然后再次开启如下几个关键的服务可能会有所帮助: - Microsoft Account Sign-in Assistant - User Profile Service - Secondary Logon 可通过 services.msc 来定位它们的状态以及属性对话框里查看依赖关系列表进一步分析根本诱因所在之处。 --- ### 注意事项 尽管 Windows Hello 技术本身具备较高水准的安全防护机制,但仍存在某些特殊场景下可能被攻破的风险。因此官方也鼓励大家结合其他多重因素共同构筑更加坚固防线比如同时激活指纹读取装置等等措施加以防范潜在威胁发生几率降到最小程度范围内。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值