深度学习——苹果新鲜度识别

本文详细介绍了使用YOLOv8模型进行苹果新鲜度检测的项目,包括环境配置、数据集划分、模型训练和评估过程,以及YOLOv8的网络定义和Loss函数。结果显示,模型在苹果新鲜度检测上表现出高精度和快速性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本项目使用yolov8模型作为目标检测的模型

目录

项目背景:

一、项目需求:

二、项目实现:

(一)流程介绍:

1、YOLOv8环境配置:

(二)、训练数据集的准备工作

1、准备好数据集:

2、划分数据集

3、训练模型

4、预测模型

三、检测结果与思考:

1、训练阶段:

2、训练结束:

训练过程视频:

四、知识体系:  

(一)、网络定义:

(二)、输出定义:

(三)、Loss函数定义:

五、模型结构设计

六、模型推理过程

七、小总结:

项目背景:

        近年来,随着全球经济的发展,水果消费市场规模不断扩大,水果种类也日益丰富。水果检测与识别技术在农业生产、仓储物流、超市零售等领域具有重要的应用价值。传统的水果检测与识别方法主要依赖于人工识别,这种方法在一定程度上受到人力成本、识别效率和准确性等方面的限制。因此,开发一种高效、准确的自动化水果检测与识别系统具有重要的研究意义和实际价值。

        在本博文中,我们提出了一种基于深度学习的苹果新鲜度检测与识别系统,该系统采用YOLOv8算法对苹果进行检测和识别,实现对图片中的苹果进行准确识别。

一、项目需求:

对苹果外形进行检测与识别,系统将识别出图片中苹果的新鲜程度并显示相应的类别。

二、项目实现:

通过调研,本项目最终使用yolov8模型作为目标检测的模型, YOLOv8 旨在快速、准确且易于使用,使其成为广泛的物体检测、图像分割和图像分类任务的极佳选择。

(一)流程介绍:
1、YOLOv8环境配置:

首先去自己的anaconda的安装的envs(虚拟环境),在导航栏输入cmd,进入命令窗口。

确保python>=3.7;CUDA>=10.1,PYtorch>=1.7

(1)、创建一个虚拟环境

conda create -n torch1.12.1 python=3.8.8

(2)、激活刚建的虚拟环境

activate torch1.12.1 

(3)、到官方网站下载yolo模型 ,下载好后解压,里面有个文件requirements.txt 

 https://github.com/ultralytics/ultralytics

安装一个整体包:

pip install -r .\requirements.txt 

直接按照路径会有问题,找到自己 requirements.txt 文件路径,我这里是pip install -r D:\ultralytics-main\ultralytics-main\requirements.txt

(4)、然后安装ultralytics ,这是必须的。可以用镜像地址。

pip install ultralytics -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com

(5)、安装下载好包,接下来就是验证:

 yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg' show=True save=True 

(二)、训练数据集的准备工作
1、准备好数据集:

我们选择的苹果数据集包含图片数量978张

2、划分数据集

我们导出的数据文件结构

标签类别包含两类:fresh_apple和rotten_apple;

├── yolov8_dataset
	└── train
		└── images (folder including all training images)
		└── labels (folder including all training labels)
	└── test
		└── images (folder including all testing images)
		└── labels (folder including all testing labels)
	└── val
		└── images (folder including all testing images)
		└── labels (folder includi
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值