【二十七】【算法分析与设计】归并(1),912. 排序数组,归并排序,递归函数的时间复杂度计算,LCR 170. 交易逆序对的总数

912. 排序数组

给你一个整数数组 nums,请你将该数组升序排列。

示例 1:

输入:nums = [5,2,3,1] 输出:[1,2,3,5]

示例 2:

输入:nums = [5,1,1,2,0,0] 输出:[0,0,1,1,2,5]

提示:

  • 1 <= nums.length <= 5 * 10(4)

  • -5 * 10(4) <= nums[i] <= 5 * 10(4)

递归函数,定义递归函数mergeSortnums数组中[left,right]区间元素进行升序排序。

递归内部逻辑,将[left,mid][mid+1,right]两个区间分别进行排序,排序完的两个独立的升序的区间,利用双指针进行合并。

递归的出口是left>=right,表示区间已经没有元素或者只有一个元素的情况,此时不需要进行排序操作。

内部递归逻辑维护意义的代码,实际上是利用双指针将两个有序的区间[left,mid][mid+1,right]进行合并的过程。

双指针遍历两个部分,将小的尾插到tmp临时数组中,直到所有元素都存储在tmp数组中。

定义将升序区间[left,mid][mid+1,right]两个区间分割出两个待处理的区间,[left,cur1-1][cur1,mid][mid+1,cur2-1][cur2,right]

定义end1=mid,end2=right,得到最终的区间划分,[left,cur1-1][cur1,end1][mid+1,cur2-1][cur2,end2]

[left,cur1-1][mid+1,cur2-1]全都是已经处理完的区间,[cur1,end1][cur2,end2]是待处理的区间。

定义tmp数组,和index[0,index-1][index,right-left]区间划分。

总区间长度是right-left+1,[0,index-1]表示处理完毕的区间,[index,right-left]表示待处理的区间。

while (cur1 <= end1 && cur2 <= end2) tmp[index++] = nums[cur1] <= nums[cur2] ? nums[cur1++] : nums[cur2++];

不断地维护numstmp区间的定义。当有一个区间待处理区间没有元素时,循环退出。此时需要把另一个还没有处理完的区间剩余元素添加到tmp数组中。

while (cur1 <= end1) tmp[index++] = nums[cur1++]; while (cur2 <= end2) tmp[index++] = nums[cur2++];

维护区间定义。

for (int i = left; i <= right; i++) nums[i] = tmp[i - left];

最后将tmp临时数组,排好序的依次赋值给nu

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

妖精七七_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值