P1008 [NOIP1998 普及组] 三连击
[NOIP1998 普及组] 三连击
题目背景
本题为提交答案题,您可以写程序或手算在本机上算出答案后,直接提交答案文本,也可提交答案生成程序。
题目描述
将 1 , 2 , … , 9 1, 2, \ldots , 9 1,2,…,9 共 9 9 9 个数分成 3 3 3 组,分别组成 3 3 3 个三位数,且使这 3 3 3 个三位数构成 1 : 2 : 3 1: 2 : 3 1:2:3 的比例,试求出所有满足条件的 3 3 3 个三位数。
输入格式
无
输出格式
若干行,每行 3 3 3 个数字。按照每行第 1 1 1 个数字升序排列。
样例 #1
样例输入 #1
无
样例输出 #1
* * * ... * * * (剩余部分不予展示) ``` ## 提示 NOIP1998 普及组 第一题
代码
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
int main(){
int a[10];
for(int i=123;i<=333;i++){
a[1]=i/100;
a[2]=i/10%10;
a[3]=i%10;
a[4]=2*i/100;
a[5]=2*i/10%10;
a[6]=2*i%10;
a[7]=3*i/100;
a[8]=3*i/10%10;
a[9]=3*i%10;
if(a[1]*a[2]*a[3]*a[4]*a[5]*a[6]*a[7]*a[8]*a[9]==(1*2*3*4*5*6*7*8*9)&&a[1]+a[2]+a[3]+a[4]+a[5]+a[6]+a[7]+a[8]+a[9]==(1+2+3+4+5+6+7+8+9))
cout<<i<<" "<<2*i<<" "<<3*i<<endl;
}
}
- 已知条件
对于三个三位数,假设为a,b,c,已知条件是a2=b,a3=c,并且a b c中所有数字只出现一次. - 初步思路
因此我们可以模拟数字a,数字b和c可以通过等式b=2a,c=3a得出. - 判断独立数字为1,2,3,4,5,6,7,8,9
如何判断所有数字只出现一次?取出这三个三位数所有的独立数字,如果满足条件必须这九个数字是1,2,3,4,5,6,7,8,9.
取出的所有数字依次相乘,相加判断与1,2,3,4,5,6,7,8,9数字依次相乘相加是否一致.
P1003 [NOIP2011 提高组] 铺地毯
[NOIP2011 提高组] 铺地毯
题目描述
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 n n n 张地毯,编号从 1 1 1 到 n n n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入格式
输入共 n + 2 n + 2 n+2 行。
第一行,一个整数 n n n,表示总共有 n n n 张地毯。
接下来的 n n n 行中,第 i + 1 i+1 i+1 行表示编号 i i i 的地毯的信息,包含四个整数 a , b , g , k a ,b ,g ,k a,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 ( a , b ) (a, b) (a,b) 以及地毯在 x x x 轴和 y y y 轴方向的长度。
第 n + 2 n + 2 n+2 行包含两个整数 x x x 和 y y y,表示所求的地面的点的坐标 ( x , y ) (x, y) (x,y)。
输出格式
输出共 1 1 1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出
-1
。样例 #1
样例输入 #1
3 1 0 2 3 0 2 3 3 2 1 3 3 2 2
样例输出 #1
3
样例 #2
样例输入 #2
3 1 0 2 3 0 2 3 3 2 1 3 3 4 5
样例输出 #2
-1
提示
【样例解释 1】
如下图, 1 1 1 号地毯用实线表示, 2 2 2 号地毯用虚线表示, 3 3 3 号用双实线表示,覆盖点 ( 2 , 2 ) (2,2) (2,2) 的最上面一张地毯是 3 3 3号地毯。
【数据范围】
对于 30 % 30\% 30% 的数据,有 n ≤ 2 n \le 2 n≤2。 对于 50 % 50\% 50% 的数据, 0 ≤ a , b , g , k ≤ 100 0 \le a, b, g, k \le 100 0≤a,b,g,k≤100。
对于 100 % 100\% 100% 的数据,有 0 ≤ n ≤ 1 0 4 0 \le n \le 10^4 0≤n≤104, 0 ≤ a , b , g , k ≤ 10 5 0 \le a, b, g, k \le {10}^5 0≤a,b,g,k≤105。noip2011 提高组 day1 第 1 1 1 题。
代码
#include<bits/stdc++.h>
using namespace std;
struct node {
int a, b, g, k;
};
int main() {
int n;
cin >> n;
vector<node>read;
for (int i = 0; i < n; i++) {
int a, b, g, k;
cin >> a >> b >> g >> k;
read.push_back({ a,b,g,k });
}
int x, y;
cin >> x >> y;
int ret=-1;
int i = 1;
for (auto pos : read) {
int a, b, g, k;
a = pos.a; b = pos.b; g = pos.g; k = pos.k;
int x1 = a; int x2 = a + g; int y1 = b; int y2 = b + k;
if (x <= x2 && x >= x1 && y >= y1 && y <= y2) ret = i;
i++;
}
cout << ret << endl;
return 0;
}
- 题目要求
我们需要判断在x,y点上最后一次铺上地毯的地毯编号,如果x,y坐标上没有被铺上地毯,则输出-1. - 思路
因此我们可以先得到x,y点,每一次铺地毯时我们判断x,y点是否在这次地毯上,如果被地毯覆盖了就记录一次地毯的编号. - 存储输入数据
因为我们是先输入地毯的数据然后再输入目标点x,y坐标.因此我们可以先用一个变量存储先输入的地毯数据,也就是说我们可以用变量存储所有的需要输入的数据,然后再统一使用.
P1002 [NOIP2002 普及组] 过河卒
[NOIP2002 普及组] 过河卒
题目描述
棋盘上 A A A 点有一个过河卒,需要走到目标 B B B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C C C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示, A A A 点 ( 0 , 0 ) (0, 0) (0,0)、 B B B 点 ( n , m ) (n, m) (n,m),同样马的位置坐标是需要给出的。
现在要求你计算出卒从 A A A 点能够到达 B B B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个正整数,分别表示 B B B 点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
样例 #1
样例输入 #1
6 6 3 3
样例输出 #1
6
提示
对于 100 % 100 \% 100% 的数据, 1 ≤ n , m ≤ 20 1 \le n, m \le 20 1≤n,m≤20, 0 ≤ 0 \le 0≤ 马的坐标 ≤ 20 \le 20 ≤20。
【题目来源】
NOIP 2002 普及组第四题
代码
#if 1
#include "bits/stdc++.h"
using namespace std;
using ll = long long;
int main() {
ll endx, endy;
cin >> endx >> endy;
ll x0, y0;
cin >> x0 >> y0;
vector<pair<ll, ll>> forbit_pos;
forbit_pos.push_back({ x0 + 1,y0 + 2 });
forbit_pos.push_back({ x0 + 1,y0 - 2 });
forbit_pos.push_back({ x0 + 2,y0 + 1 });
forbit_pos.push_back({ x0 + 2,y0 - 1 });
forbit_pos.push_back({ x0 - 1,y0 + 2 });
forbit_pos.push_back({ x0 - 1,y0 - 2 });
forbit_pos.push_back({ x0 - 2,y0 + 1 });
forbit_pos.push_back({ x0 - 2,y0 - 1 });
forbit_pos.push_back({ x0 ,y0 });
vector<vector<ll>> dp = vector<vector<ll>>(endx + 1, vector<ll>(endy + 1, 0));
dp[0][0] = 1;
for (auto pos : forbit_pos) {
int x = pos.first;
int y = pos.second;
if (x >= 0 && x <= endx && y >= 0 && y <= endy) {
dp[x][y] = -1;
}
}
if (dp[0][0] == -1) {
cout << 0 << endl; return 0;
}
for (int i = 0; i <= endx; i++) {
for (int j = 0; j <= endy; j++) {
if (i == 0 && j == 0) continue;
if (dp[i][j] == -1)continue;
dp[i][j] = ((i - 1 >= 0 && dp[i - 1][j] != -1) ? dp[i - 1][j] : 0) + ((j - 1 >= 0 && dp[i][j - 1] != -1) ? dp[i][j - 1] : 0);
}
}
cout << dp[endx][endy] << endl;
}
#endif
- 思路
很明显的动态规划题目,创建对应大小的二维dp数组,0~endx,0~endy,所以需要开辟endx+1和endy+1个空间,如果不想思考太多可以统一开辟endx+3,endy+3个空间. - 数据的存储
用forbit_pos记录所有的禁止的点坐标,分别是以马坐标为基准的马脚点,注意不要忘记了马本身也是一个禁止点. - 注意事项
不要忘记了特殊判断,比如说当我们的起始点0,0位置如果是禁止点那么我们直接输出0即可.
结尾
最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。
同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。
谢谢您的支持,期待与您在下一篇文章中再次相遇!