易漏范数总结(二范数、F范数以及其他变种范数)

一.矩阵二范数

矩阵的二范数是一个值,具体计算如下:

                                                \left \| A \right \|_{2}=\sqrt{\lambda _{max}(A^TA)}

即矩阵的二范数是通过计算其最大特征值并进行开根号得到的。

二.向量二范数

向量的二范数也是一个值,不过是对向量的每个元素进行平方加和开根号得到,具体计算如下:

                                                \left \| A \right \|_{F}=\sqrt{A_{1}^2+A_{2}^2+A_{3}^2+...+A_{n}^2}

三.矩阵F范数

矩阵的F范数与向量的二范数定义类似,只不过是对矩阵整个进行平方和加和并开根号得到结果。

具体计算我们一般用矩阵表示如下:

                                                \left \| A \right \|_{F}=tr(AA^T)

四.向量多范数

根据论文“Efficient and Robust Feature Selection via Joint `2,1-Norms Minimization”中的定义,我们可以得到向量p范数的定义如下:

                                               

实际上是对向量中的每个元素进行p次方求和再开p次方。

论文可以自取 :Machine_Learning/papers/Generalized Robust Regression for Jointly Sparse Subspace Learning.pdf at main · breakthrougher/Machine_Learning (github.com)

五.矩阵多范数(2、1范数)

根据论文“Efficient and Robust Feature Selection via Joint `2,1-Norms Minimization”中的定义,我们可以得到矩阵r、p范数的定义如下:

                ​​​​​​​        

特别地我们之后会经常碰到的2、1范数,定义如下:

                              

2、1范数实际上就是对矩阵每行求二范数再进行累加得到最后结果。

将2、1范数写成矩阵形式可以得到:

                                                \left \| M \right \|_{2,1}=M^TDM   

其中D是一个对角阵,每一个元素可以通过以下计算得到:

                                                 D_{ii}=\frac{1}{2\left \| M^i \right \|_{2}}

六.特别注意

对于矩阵的F范数打开要特别注意数据的存放格式,是按行放还是按列放。

若是数据按行放,最好按以下打开:

                                              \left \| A \right \|_{F}=tr(AA^T)

若是数据按列放,最好按以下打开:

                                              \left \| A \right \|_{F}=tr(A^TA)

特别地在用迹进行运算时要注意遍历放两边!!!

----- 以上为本人学习机器学习这门课总结出的一些知识点,有错误或者疑问可以评论区交流,欢迎指正!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值