【离散数学】九章:关系 - 关系的表示

本文介绍了关系的三种表示方法:集合、矩阵和有向图,并讨论了关系的自反性、对称性、反对称性和传递性等性质。通过实例解析了如何使用0-1矩阵表示有限集之间的关系,以及如何从有向图中判断关系的特定属性。此外,还涉及了关系合成的矩阵计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节及本章的剩余部分研究的所有关系均为二元关系,因此,在这些内容中出现的“关系〞一词都表示二元关系

1、用集合表示关系

关系是序偶的集合,所以描述集合能用的方法一般都可以描述关系,比如枚举满足关系的所有序偶,比如叙述满足关系的性质。

前面的例子都是用集合表示关系,这里不赘述

2、用矩阵表示关系

矩阵表示关系

有限集之间的关系可用0-1 矩阵表示:

假设 R 是从 A = { a1, a2,…,am } 到 B = { b1, b2,…,bn } 的关系,则A×B上的所有关系可以用一个 m×n的长方形 0-1 矩阵 来表示。

关系R由矩阵 MR = [ mij ] 表示,其中
在这里插入图片描述
当 ai 与 bj 相关时,表示 R 的 0-1 矩阵的 (i, j) 项是1,如果ai 与 bj 无关系,则是0

📘例1:
假设 A = { 1, 2, 3 },B = { 1, 2 }。令 R 为 A 到 B 的关系,如果 a∈A,b∈B 且 a > b,则 R 包含 (a, b)。表示 R 的矩阵是什么(假设元素的顺序与递增的数值顺序相同)?

由题意得,R = { (2, 1), (3, 1), (3, 2) },因此矩阵为:
在这里插入图片描述

📘例2:
设 A = { a1, a2, a3 },B = { b1, b2, b3, b4, b5 }。哪些有序对在下面的矩阵所表示的关系 R 中?
在这里插入图片描述

因为 R 是由 mij = 1 的有序对 (ai, bj) 构成的,所以
R = { (a1, b2), (a2, b1), (a2, b3), (a2, b4), (a3, b1), (a3, b3), (a3, b5) }

⭐集合上的关系矩阵

表示定义在一个集合上的关系的矩阵是一个方阵,可以用这个矩阵确定关系是否有某种性质

R 自反时

R 是自反的,当且仅当 MR 的主对角线上的所有元素都等于1
注意:非主对角线上的元素可以是 0 或 1

在这里插入图片描述

R 对称时

R 是对称关系,当且仅当 若mij = 1 则 mji = 1

换句话说:R 是对称关系,当且仅当 MR = (MR)T

(沿主对角线对称)

R 反对称时

R 是反对称关系,当且仅当 i ≠ j 时,mij = 0 或 mji = 0(至少有一个得是0)
在这里插入图片描述
📘例:
假设集合上关系 R 由下图矩阵表示,R 是自反的、对称的和反对称的吗?
在这里插入图片描述
判断自反:因为这个矩阵中所有的对角线元素都等于1,所以 R 是自反的。
判断对称:由于 MR 是对称的,所以 R 是对称的。
判断反对称:因为 m1,2 和 m2,1 都是1,所以 R 不是反对称的

⭐确定关系合成的矩阵

确定关系合成的矩阵:已知两个关系的关系矩阵,求这两个关系矩阵的合成矩阵
在这里插入图片描述
本质是关系矩阵的布尔积,理解上可以直接把两个矩阵相乘(注意顺序,A×B和B×A不一样),0仍是0,大于等于1的写成1

3、用有向图表示关系

有向图

定义: 一个有向图(directed graph,or digraph)由顶点(或结点)集 V 和边(或弧)集 E 组成,其中边集是 V 中元素的有序对的集合。顶点 a 叫作边 (a, b) 的始点,而顶点 b 叫作这条边的终点。

形如 (a, a) 的边用一条从顶点 a 到自身的弧表示,这种边叫作环(loop)

📘例1:
画出具有顶点 a、b、c 和 d;边 (a, b)、(a, d)、(b, b)、(b, d)、(c, a)、(c, b) 和 (d, b) 的有向图

在这里插入图片描述

📘例2:
有向图中所表示的关系 R 中的有序对是什么?
在这里插入图片描述
关系中的有序对 (x, y) 是:
R = { (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3) }

⭐从有向图中 确定关系具有的属性

自反性

图中的所有顶点必须都有环

对称性

如果 (x, y) 是一条边,那么 (y, x) 也是

反对称性

如果 (x, y) 为边( x ≠ y ),则 (y, x) 不是边( x ≠ y 时, (x, y) 和 (y, x) 最多出现一个)

按照反对称的原始定义说,如果(x, y) 为边且 (y, x) 为边,那么x = y

传递性

如果 (x, y) 和 (y, z) 是边,那么 (x, z) 也是边

📘例1:
从有向图中确定关系具有哪些属性 ?

在这里插入图片描述
自反的?不是,并非每个顶点都有一个环
对称的?是的,从一个顶点到另一个顶点没有边
反对称的?是的,从一个顶点到另一个顶点没有边
传递的?是的,因为从一个顶点到另一个顶点没有边

📘例2:
从有向图中确定关系具有哪些属性 ?

在这里插入图片描述
自反的?不是,一个环都莫得
对称的?不是,从 a 到 b 有一个边,但从 b 到 a 没有
反对称的?不是,从 d 到 b 以及从 b 到 d 有边
传递的?不是,从 a 到 c 以及从 c 到 b 有边,但是从 a 到 d 没有

📘例3:
从有向图中确定关系具有哪些属性 ?

在这里插入图片描述
自反的?不是,没有环
对称的?不是,比如从 c 到 a 就没有边
反对称的?是的,每当从一个顶点到另一个顶点存在边时,没有一个有 返回路径
传递的?不是,从 a 到 b 没有边

📘例4:
从有向图中确定关系具有哪些属性 ?
在这里插入图片描述

自反的?不是,没有环
对称的?不是,例如从 d 到 a 不存在边
反对称的?是的,无论哪条从一个顶点到另一个顶点的边,都没有返回路径
传递的?是的,没有第一个边结束于第二个边开始的顶点的两条边

### 离散数学中图的关系矩阵 #### 关系矩阵定义 关系矩阵是一种用于表示有限集合上二元关系的布尔矩阵。对于给定的一个具有 \( n \) 个元素的集合 \( A=\{a_1,a_2,\ldots ,a_n\} \),如果存在一个从该集合到自身的二元关系 \( R \subseteq A\times A \),则可以构建一个 \( n×n \) 的布尔矩阵 \( M_R=[m_{ij}] \)[^3]。 其中, \[ m_{ij}= \begin{cases} 1 & 如果(a_i, a_j)\in R \\ 0 & 否则 \end{cases} \] 这种矩阵能够直观展示哪些元素间建立了特定关系,从而简化了复杂关系的理解过程。 #### 计算方法 为了计算两个顶点间的路径数量,在不考虑对角线元素的情况下,任何位置上的矩阵元素代表对应节点之间的通路数目。例如在一个四阶方阵里,\(M(2,4)=5\) 表明第二行第四列处数值为5,则意味着由第二个节点至第四个节点长度恰好等于4步的不同路径共有五条[^4]。 当涉及到多步可达性时,可以通过幂运算得到更高次幂的结果来反映间接连接情况: 设 \(A=(V,E)\) 是简单有向图,其邻接矩阵记作 \(M_A\) 。那么 \(k\) 步内可到达性的判定可通过求解 \(M^{k}_A\) 实现,即: \[ (i,j)-th entry of M^{k}_{A}\neq 0 \Leftrightarrow there exists at least one path from vertex i to j with length k.\] 此性质使得通过简单的矩阵乘法操作即可快速判断两点间是否存在指定长度内的连通路径。 ```python import numpy as np def compute_reachability_matrix(adj_matrix, steps): reachability = adj_matrix.copy() for _ in range(steps - 1): reachability = np.dot(reachability, adj_matrix) return reachability.astype(bool).astype(int) ``` 这段Python代码实现了上述提到的方法,它接收一个邻接矩阵作为输入并返回经过一定步数后的可达性矩阵。 #### 应用场景 - **社交网络分析**:研究个体在网络中的影响力范围; - **搜索引擎优化(SEO)**:评估网页链接结构的有效性和SEO潜力; - **物流配送规划**:寻找最短运输路线或最小成本方案; - **生物信息学领域**:蛋白质相互作用预测等生物学问题建模。
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

徐徐同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值