【数学(一)集合与常用逻辑用语】集合的基本运算

本文介绍数学第一章中集合的最后一部分内容——集合的基本运算


封面

一、概念总结

在本小节中主要涉及到几个名词,并集、交集、全集和补集,我们通过一个表格来看一下它们的概念

我们这里在描述概念时不在复述课本上的描述,而是用自己的话来描述,更加容易理解

名称概念表示符号
并集把两个集合的所有元素合并在一起组成的集合叫做两个集合的并集 ∪ \cup
交集两个集合的公共元素构成的集合叫做两个集合的交集 ∩ \cap
全集给定的所有元素的集合叫做全集 U U U
补集全集 U U U中不属于某个集合的全部元素构成的集合叫做这个集合的补集 C u A C_uA CuA

二、从Venn图理解概念

在第一节的介绍中我们提到了一种集合的表示方法Venn图,它可以让我们直观地看到两个集合之间的关系,下面我们尝试从Venn图的角度来分析一下并集、交集、全集和补集这几个概念。

2.1 全集

我们首先来理解一下全集,给定的所有元素可以叫做全集,或者说我们要研究的全部研究对象构成的一个集合也叫做全集,比如我给出一个四边形,它内部的区域就是我们全部的研究对象,那么这个四边形就可以看作一个全集

全集

2.2 并集

假设有两个集合,分别是集合A和集合B,我们把集合A和集合B全部元素构成的集合称为并集

并集

图上集合A和集合B的两部分区域加起来就是集合A和集合B的并集记作 A ∪ B A \cup B AB

我们来举一个更加形象的例子,集合 A = { 1 , 2 , 3 } A = \{1,2,3\} A={1,2,3},集合 B = { 4 , 5 , 6 } B = \{4,5,6\} B={4,5,6},此时 A ∪ B A \cup B AB是什么?很明显,并集是集合A和集合B所有元素合在一起构成的集合,所以 A ∪ B = { 1 , 2 , 3 , 4 , 5 , 6 } A \cup B = \{1,2,3,4,5,6\} AB={1,2,3,4,5,6}

2.3 交集

还是假设有两个集合,分别是集合A和集合B,两个集合的公共元素构成的集合叫做交集,我们可以尝试画一下Venn图
交集
图中A和B相交的部分就是集合A和集合B的交集记作 A ∩ B A \cap B AB

我们还是来举一个更加形象的例子,集合 A = { 1 , 2 , 3 } A = \{1,2,3\} A={1,2,3},集合 B = { 3 , 4 , 5 } B = \{3,4,5\} B={3,4,5},此时 A ∩ B A \cap B AB是什么?很明显,两个集合的公共元素构成的集合叫做交集,所以 A ∩ B = { 3 } A \cap B = \{3\} AB={3}

2.4 补集

最后我们来介绍一下补集,全集 U U U中不属于某个集合的全部元素构成的集合叫做补集,假设我们有一个集合A,全集U中属于集合A的其余元素构成的集合叫做集合A的补集

补集

三、一些结论

下面我们来介绍一些关于并集、交集、全集和补集的结论,可以尝试用Venn图来思考一下为什么

  • A ∪ A = A ( A 并 A 等于 A ) A \cup A = A(A并A等于A) AA=AAA等于A
  • A ∪ ∅ = A ( A 并空集等于 A ) A \cup \emptyset = A(A并空集等于A) A=AA并空集等于A
  • A ∩ A = A ( A 交 A 等于 A ) A \cap A = A(A交A等于A) AA=AAA等于A
  • A ∩ ∅ = ∅ ( A 交空集等于空集) A \cap \emptyset = \emptyset(A交空集等于空集) A=A交空集等于空集)
  • A ∪ B = B ∪ A ( A 并 B 等于 B 并 A ) A \cup B = B \cup A(A并B等于B并A) AB=BAAB等于BA
  • A ∩ B = B ∩ A ( A 交 B 等于 B 交 A ) A \cap B = B \cap A(A交B等于B交A) AB=BAAB等于BA
  • A ∪ B ⊇ A ( A 并 B 包含 A ) A \cup B \supseteq A(A并B包含A) ABAAB包含A
  • A ∪ B ⊇ B ( A 并 B 包含 B ) A \cup B \supseteq B(A并B包含B) ABBAB包含B
  • A ∩ B = A ⇔ A ⊆ B ( A 交 B 等于 A 等价于 A 包含于 B ) A \cap B = A \Leftrightarrow A \subseteq B(A交B等于A等价于A包含于B) AB=AABAB等于A等价于A包含于B
  • A ∪ B = A ⇔ A ⊇ B ( A 并 B 等于 A 等价于 A 包含 B ) A \cup B = A \Leftrightarrow A \supseteq B(A并B等于A等价于A包含B) AB=AABAB等于A等价于A包含B
  • A ∪ C u A = U ( A 并 A 的补集等于全集) A \cup C_uA = U(A并A的补集等于全集) ACuA=UAA的补集等于全集)
  • A ∩ C u A = ∅ ( A 交 A 的补集等于空集) A \cap C_uA = \emptyset(A交A的补集等于空集) ACuA=AA的补集等于空集)
  • C u ( C u A ) = A ( A 的补集的补集等于 A ) C_u(C_uA) = A(A的补集的补集等于A) Cu(CuA)=AA的补集的补集等于A

虽然上面这些结论看起来很多,但是呢它确实很多(开个玩笑),虽然他们确实很多,但是万变不离其宗,只要我们清晰地理解的并集、交集、全集和补集的概念,能够学会使用Venn图来分析,那么以后遇到其他类似的结论,判断起来也不成问题。

  • 7
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值