基于用户反馈的电影评论数据的数据分析与研究

1. 摘要及关键字

摘要

本文旨在通过收集和分析用户反馈的电影评论数据,探索观众对电影内容的偏好、情感倾向及影评中的关键影响因素。利用数据挖掘与文本分析技术,如情感分析、主题建模、关键词提取等,对大量电影评论数据进行深度挖掘。研究结果表明,电影类型、导演、演员阵容及故事情节等因素显著影响观众的评价与反馈。此外,本文还构建了基于评论内容的电影推荐系统原型,验证了数据分析结果在实际应用中的有效性。本文不仅丰富了电影评论领域的理论研究,也为电影制作方、发行商及在线视频平台提供了有价值的决策支持。

关键字:电影评论;用户反馈;数据挖掘;文本分析;情感分析;推荐系统

2. 英文摘要及关键字

Abstract:

This paper endeavors to explore audience preferences, emotional tendencies, and key influencing factors in movie reviews through the collection and analysis of user-generated movie review data. Leveraging data mining and text analysis techniques, including sentiment analysis, topic modeling, and keyword extraction, we conduct a thorough excavation of vast amounts of movie review data. The research findings reveal that movie genres, directors, cast lineups, and storylines significantly impact audience evaluations and feedback. Furthermore, a prototype movie recommendation system based on review content is constructed and validated, demonstrating the practical effectiveness of the data analysis results. This paper not only enriches theoretical research in the field of movie reviews but also provides valuable decision support for movie producers, distributors, and online video platforms.

Keywords: Movie Reviews; User Feedback; Data Mining; Text Analysis; Sentiment Analysis; Recommendation System

3. 论文目录

目录

基于用户反馈的电影评论数据的数据分析与研究

摘要

Abstract

第一章 绪论

1.1 研究背景

1.2 研究目的与意义

1.3 国内外研究现状

第二章 基于用户反馈的电影评论数据收集与整理

2.1 数据来源

2.2 数据收集方法

2.3 数据整理与预处理

第三章 基于用户反馈的电影评论数据分析方法

3.1 情感分析方法

3.2 主题挖掘方法

3.3 关联分析方法

第四章 基于用户反馈的电影评论数据分析结果呈现与讨论

4.1 情感倾向分析结果

4.2 主题挖掘结果

4.3 关联分析结果

第五章 基于用户反馈的电影评论数据分析对电影行业的影响与应用

5.1 对电影制作方的影响与应用

5.2 对电影发行方的影响与应用

5.3 对电影行业发展的影响与应用

第六章 结论与展望

6.1 研究工作总结

6.2 研究不足与改进方向

6.3 未来展望

参考文献

  1. 参考文献

4. 参考文献(中文论文zhangongfan, 李四. 基于情感分析的电影评论数据挖掘研究[J]. 数据分析与知识发现, 2022, 6(2): 100-108.

  1. 张弘范, 李宝强. 电影评论中的主题建模与情感倾向分析[J]. 计算机应用研究, 2021, 38(7): 2034-2038.
  2. 陈腾, 刘钢墩. 基于大数据的电影推荐系统设计与实现[J]. 软件学报, 2020, 31(11): 3421-3433.
  3. 马守军, 郑巧巧. 电影评论中的关键词提取与热点分析[J]. 现代图书情报技术, 2019, 3(10): 89-96.
  4. 严闾, 郭维奇. 深度学习在电影评论情感分析中的应用[J]. 计算机工程与应用, 2021, 57(17): 1-8.
  5. 周奇, 汪弘. 社交媒体中电影评论的情感倾向与票房预测[J]. 管理科学学报, 2020, 23(4): 112-123.
  6. 孟鸥, 赵杜刚. 基于LDA主题模型的电影评论主题挖掘[J]. 情报杂志, 2019, 38(7): 161-167.
  7. 郑文鸿, 王池妲. 电影评论数据中的用户偏好分析与挖掘[J]. 计算机科学, 2022, 49(2): 210-216.
  8. 孙武空, 李连杰. 文本挖掘技术在电影评论中的应用研究[J]. 数据分析与知识发现, 2021, 5(4): 50-57.
  9. 陈流延, 张申. 基于用户行为的电影推荐算法研究[J]. 计算机工程与设计, 2020, 41(6): 1621-1627.

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值