摘要
本文旨在探讨基于大数据技术的抖音短视频平台数据分析与可视化的方法与应用。通过收集抖音平台上的海量短视频数据,运用数据挖掘、机器学习等先进技术,对视频内容、用户行为、流行趋势等维度进行深入分析。同时,利用数据可视化技术,将分析结果以直观、易懂的方式呈现出来,为抖音平台的内容创作者、广告主、以及平台管理者提供决策支持。研究结果表明,基于大数据的抖音短视频数据分析与可视化能够有效揭示用户偏好、内容热度及市场趋势,对优化内容创作、提升用户体验、实现精准营销具有重要意义。
关键字:大数据;抖音短视频;数据分析;可视化;数据挖掘;机器学习
Abstract
This paper explores the methods and applications of data analysis and visualization for Douyin short video platform based on big data technology. By collecting massive short video data from Douyin platform, advanced technologies such as data mining and machine learning are employed to conduct in-depth analysis on video content, user behavior, and popular trends. Meanwhile, data visualization techniques are utilized to present the analysis results in an intuitive and easy-to-understand manner, providing decision support for content creators, advertisers, and platform managers on Douyin. The research results show that data analysis and visualization of Douyin short videos based on big data can effectively reveal user preferences, content popularity, and market trends, which are of great significance for optimizing content creation, enhancing user experience, and achieving precise marketing.
Keywords: Big Data; Douyin Short Video; Data Analysis; Visualization; Data Mining; Machine Learning
3. 论文目录
摘要
第一章 引言
- 研究背景与意义
- 研究目的与内容
- 研究方法与技术路线
- 论文结构安排
第二章 相关理论与技术基础
- 大数据技术概述
- 数据挖掘技术
- 机器学习算法
- 数据可视化技术
第三章 数据获取与处理
- 数据来源与采集方法
- 数据清洗与预处理
- 数据存储与管理
第四章 抖音短视频数据分析
- 视频内容分析
- 用户行为分析
- 流行趋势预测
第五章 数据可视化展示
- 可视化工具与平台选择
- 视频内容可视化
- 用户行为可视化
- 趋势预测可视化
第六章 案例分析与应用
- 案例分析一:热门视频内容分析
- 案例分析二:用户画像构建
- 案例分析三:精准营销策略
第七章 结论与展望
- 研究成果总结
- 研究贡献与不足
- 未来研究方向
参考文献
4. 参考文献(10篇中文论文)
- 张于讯, 李盛政. 基于大数据的社交媒体用户行为分析[J]. 计算机科学, 2022, 49(10): 123-130.
- 王伊莲, 赵嘉伟. 抖音短视频平台的内容推荐算法研究[J]. 信息技术, 2021, (12): 56-61.
- 陈武天, 刘振顺. 大数据环境下短视频平台的数据挖掘与可视化[J]. 数据分析与知识发现, 2020, 4(11): 78-85.
- 郑逸云, 钱俊达. 机器学习在短视频内容分类中的应用[J]. 计算机应用研究, 2019, 36(7): 2034-2038.
- 林徽语 周孟儒. 基于大数据的短视频平台用户画像构建[J]. 现代情报, 2018, 38(10): 14-20.
- 吴三, 李锌臻. 数据可视化技术在社交媒体分析中的应用[J]. 情报科学, 2017, 35(5): 121-126.
- 黄秋萍, 蔡淑薇. 抖音短视频平台的传播机制与影响力分析[J]. 新闻界, 2016, (24): 54-59.
- 李志宏,丘亚芠. 大数据时代下的短视频内容生产与消费研究[J]. 传媒, 2015, (22): 67-70.
- 陈九, 王亦豪. 数据挖掘技术在短视频平台用户行为预测中的应用[J]. 计算机工程与应用, 2014, 50(17): 222-226.
- 高成岩, 李雅君. 基于大数据的短视频平台运营策略分析[J]. 电子商务, 2013, (10): 34-37.
部分成果展示
联系我们
如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~