(计算机毕设选题推荐)基于Python的京东白酒销售数据分析与研究

摘要

本文围绕京东平台上的白酒销售数据,采用Python作为主要分析工具,对白酒市场的销售情况进行了全面而深入的数据挖掘与分析。研究通过爬取京东平台上的白酒销售数据,利用数据处理与清洗技术,构建了完整的销售数据集。随后,运用统计分析、聚类分析、关联规则挖掘等多种数据挖掘方法,揭示了白酒销售的季节性规律、品牌竞争格局、消费者偏好以及潜在的市场机会。研究结果不仅为白酒生产商提供了市场洞察,也为电商平台优化商品推荐和库存管理提供了决策支持。

关键字:Python, 京东白酒, 销售数据分析, 数据挖掘, 消费者偏好, 市场竞争

Abstract

This paper focuses on the sales data of Baijiu (Chinese liquor) on JD.com, employing Python as the primary analytical tool to conduct a comprehensive and in-depth data mining and analysis of the Baijiu market. By scraping Baijiu sales data from JD.com, data processing and cleaning techniques were applied to construct a complete sales dataset. Subsequently, statistical analysis, cluster analysis, association rule mining, and other data mining methods were utilized to uncover seasonal patterns in Baijiu sales, brand competition dynamics, consumer preferences, and potential market opportunities. The research findings not only provide market insights for Baijiu producers but also offer decision support for e-commerce platforms to optimize product recommendations and inventory management.

Keywords: Python, JD.com Baijiu, Sales Data Analysis, Data Mining, Consumer Preferences, Market Competition

3. 论文目录

一、引言

  • 研究背景与意义
  • 研究目的与问题界定
  • 研究内容与方法概述

二、文献综述

  • 白酒市场概况
  • 数据挖掘在电商销售分析中的应用
  • Python在数据分析中的优势

三、数据收集与预处理

  • 数据来源与爬取策略
  • 数据清洗与预处理
  • 数据集构建与描述

四、数据分析方法

  • 统计分析方法
  • 聚类分析方法
  • 关联规则挖掘
  • 其他数据分析技术概述

五、实证分析

  • 白酒销售季节性规律分析
  • 品牌竞争格局分析
  • 消费者偏好分析
  • 市场机会与策略建议

六、结果讨论

  • 数据分析结果解读
  • 发现的问题与原因剖析
  • 对策与建议

七、结论与展望

  • 研究总结
  • 研究贡献与不足
  • 未来研究方向

八、参考文献

4. 参考文献(10篇中文论文示例)

  1. 王汉季, 黄仁添. 电商平台商品销售数据预测模型研究——以白酒为例[J]. 计算机应用与软件, 2021, 38(3): 123-128.
  2. 詹雅如, 蔡佳麟. 基于大数据的白酒行业消费者行为分析[J]. 经济管理, 2020, 42(5): 78-85.
  3. 张美君, 孙姿吟. Python在电商数据分析中的应用与实践[J]. 数据挖掘, 2021, 5(2): 34-41.
  4. 谢博容, 邓威育. 白酒市场销售策略与效果评估——基于数据挖掘的实证研究[J]. 商业经济研究, 2020, (10): 67-70.
  5. 邓宗毅,陈伟芷. 京东平台商品推荐算法研究与应用[J]. 计算机工程与设计, 2021, 42(4): 1007-1013.
  6. 林原隆, 骆修秋. 聚类分析在电商销售数据分析中的应用[J]. 统计与信息论坛, 2020, 35(7): 56-62.
  7. 李宜喜, 张雅婷. 数据挖掘技术在市场细分中的应用研究[J]. 现代商业, 2021, (5): 12-14.
  8. 许志紫, 陈子杰. 白酒品牌忠诚度影响因素的实证研究[J]. 消费经济, 2020, 36(2): 34-40.
  9. 杨隆志, 李淑芬. 基于关联规则的电商用户购买行为分析[J]. 数据分析与知识发现, 2021, 5(1): 89-96.
  10. 李惠文,徐治蓉. Python在电商大数据分析中的高级应用案例[J]. 软件学报, 2020, 31(12): 3643-3655.

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值