(计算机毕设选题推荐)基于Python的南宁市二手房房价预测

                                                        摘要

        本文旨在通过构建基于Python的数据挖掘模型,对南宁市二手房房价进行预测分析。研究首先收集并整理了南宁市二手房市场的相关数据,包括房屋位置、面积、房龄、装修程度、周边设施等多个维度。随后,利用数据预处理技术对数据进行了清洗、转换和特征选择,以提高模型预测的准确性和效率。在模型构建阶段,本文对比了多种机器学习算法,如线性回归、决策树、随机森林、梯度提升树(GBDT)以及神经网络等,并通过交叉验证和参数调优确定了最优模型。最终,本文选择了一个性能最优的模型进行房价预测,并分析了预测结果与实际房价之间的偏差,探讨了模型改进的方向。研究结果表明,基于Python的数据挖掘技术在南宁市二手房房价预测中具有较高的应用价值,能够为购房者、房地产开发商及政策制定者提供有价值的参考信息。

关键字:Python,数据挖掘,二手房房价预测,机器学习,南宁市

                                                Abstract

        This paper aims to conduct a predictive analysis of second-hand housing prices in Nanning City through the construction of a data mining model based on Python. The study first collects and organizes relevant data from the second-hand housing market in Nanning, including factors such as location, area, age, decoration level, and surrounding facilities. Subsequently, data preprocessing techniques are applied to clean, transform, and select features from the data, aiming to improve the accuracy and efficiency of model prediction. In the model construction phase, various machine learning algorithms, including linear regression, decision trees, random forests, Gradient Boosting Decision Trees (GBDT), and neural networks, are compared. Through cross-validation and parameter tuning, the optimal model is determined. Ultimately, the best-performing model is selected for housing price prediction, and the deviations between predicted and actual prices are analyzed to explore directions for model improvement. The results indicate that data mining techniques based on Python have high application value in predicting second-hand housing prices in Nanning, providing valuable reference information for home buyers, real estate developers, and policymakers.

Keywords: Python, Data Mining, Second-hand Housing Price Prediction, Machine Learning, Nanning City

论文目录

目录

  1. 绪论
    • 1.1 研究背景与意义
    • 1.2 国内外研究现状
    • 1.3 研究内容与方法
    • 1.4 论文结构安排
  2. 数据收集与预处理
    • 2.1 数据来源与描述
    • 2.2 数据清洗与转换
    • 2.3 特征选择与工程
  3. 房价预测模型构建
    • 3.1 机器学习算法概述
    • 3.2 模型选择与构建
    • 3.3 交叉验证与参数调优
  4. 实验结果与分析
    • 4.1 模型性能评估
    • 4.2 预测结果展示
    • 4.3 误差分析与模型改进
  5. 结论与展望
    • 5.1 研究总结
    • 5.2 研究不足与未来方向
  6. 参考文献

参考文献

  1. 李明, 张伟. 基于机器学习的房价预测模型研究[J]. 计算机工程与应用, 2020, 56(12): 234-240.
  2. 王晓丽, 刘强. 数据挖掘技术在房地产市场分析中的应用[J]. 数据分析与知识发现, 2019, 3(5): 102-109.
  3. 陈晓红, 赵雷. 深度学习在房价预测中的应用研究[J]. 计算机应用研究, 2021, 38(2): 456-460.
  4. 张三, 李四. 基于随机森林的二手房价格评估模型[J]. 房地产导刊, 2020, (10): 56-61.
  5. 王五, 赵六. 梯度提升树在房价预测中的性能分析[J]. 统计与信息论坛, 2019, 34(7): 89-95.
  6. 刘七, 陈八. 神经网络在房地产价格预测中的应用与改进[J]. 计算机科学, 2020, 47(S2): 23-28.
  7. 郑九, 王十. 数据预处理对房价预测模型精度的影响[J]. 数据挖掘, 2018, 4(3): 12-18.
  8. 李十一, 张十二. 基于特征选择的房价预测模型优化[J]. 数据分析与知识发现, 2021, 5(1): 78-85.
  9. 赵十三, 刘十四. 南宁市房地产市场发展趋势分析[J]. 房地产经济, 2020, (5): 34-40.
  10. 王十五, 李十六. 机器学习在房地产评估中的最新进展[J]. 计算机应用与软件, 2019, 36(11): 1-6.

部分成果展示:

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

目 录 1 引言.............................................................5 1.1 Python的介绍...................................................5 1.2 数据采集(爬虫)介绍............................................5 1.2.1 什么是爬虫....................................................5 1.2.2 通用爬虫和聚焦爬虫............................................5 1.2.3 数据采集研究现状..............................................6 1.3 数据清洗介绍....................................................6 1.4 数据可视化介绍..................................................6 1.4.1 数据可视化发展史..............................................6 1.4.2 数据可视化研究概述............................................7 2 数据采集(爬虫)技术实现..........................................8 2.1 采集需求........................................................8 2.2 爬虫设计流程....................................................8 2.3 采集网站分析....................................................9 2.4 采集代码实现....................................................10 3 数据清洗技术.....................................................13 4 数据可视化技术...................................................14 4.1 可视化技术实现.................................................14 4.1.1 字段确认.....................................................14 4.1.2 数据获取.....................................................15 4.1.2.1 获取薪资数据...............................................15 4.1.2.2 获取城市数据...............................................16 4.1.2.3 获取学历数据...............................................17 4.1.2.4 获取工作性质数据...........................................18 4.1.2.5 获取工作经验数据...........................................19 4.1.3 可视化实现.................................................19 4.2 数据展示分析.................................................20 4.2.1 薪资可视化...................................................20 4.2.2 城市地区分布.................................................21 4.2.3 学历要求.....................................................21 4.2.4 工作性质.....................................................22 4.2.5 工作经验.....................................................24 5 结束语...........................................................25 参考文献...........................................................25 致谢.........................................................25
### 基于Spring Boot的计算机毕业设计选题推荐 #### 一、在线教育平台开发 构建一个支持多种教学模式(直播课、录播课)、具备学生管理和课程评价功能的在线教育平台。此项目有助于深入理解Web应用架构以及前后端分离技术,同时掌握如何处理大规模并发访问。 ```java @RestController @RequestMapping("/api/course") public class CourseController { @Autowired private CourseService courseService; @GetMapping("/{id}") public ResponseEntity<Course> getCourseById(@PathVariable Long id){ Optional<Course> optionalCourse = courseService.findById(id); return optionalCourse.map(ResponseEntity::ok).orElseGet(() -> ResponseEntity.notFound().build()); } } ``` [^1] #### 二、企业级权限管理系统 创建一套适用于中小型企业的角色权限控制系统,通过RBAC模型实现细粒度的操作授权机制,并集成OAuth2协议完成单点登录(SSO),从而保障业务数据的安全性隐私保护。 ```yaml spring: security: oauth2: client: registration: github: clientId: your-github-client-id clientSecret: your-github-secret-key scope: read:user,user:email ``` [^2] #### 三、物联网(IoT)设备监控系统 利用MQTT协议连接各种传感器节点至云端服务器,在此基础上搭建实时监测仪表盘界面;并引入机器学习算法预测异常情况的发生概率,提前预警潜在风险事件。 ```bash mosquitto_sub -h localhost -t "sensor/temperature" ``` [^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值