摘要
本文旨在通过构建基于Python的数据挖掘模型,对南宁市二手房房价进行预测分析。研究首先收集并整理了南宁市二手房市场的相关数据,包括房屋位置、面积、房龄、装修程度、周边设施等多个维度。随后,利用数据预处理技术对数据进行了清洗、转换和特征选择,以提高模型预测的准确性和效率。在模型构建阶段,本文对比了多种机器学习算法,如线性回归、决策树、随机森林、梯度提升树(GBDT)以及神经网络等,并通过交叉验证和参数调优确定了最优模型。最终,本文选择了一个性能最优的模型进行房价预测,并分析了预测结果与实际房价之间的偏差,探讨了模型改进的方向。研究结果表明,基于Python的数据挖掘技术在南宁市二手房房价预测中具有较高的应用价值,能够为购房者、房地产开发商及政策制定者提供有价值的参考信息。
关键字:Python,数据挖掘,二手房房价预测,机器学习,南宁市
Abstract
This paper aims to conduct a predictive analysis of second-hand housing prices in Nanning City through the construction of a data mining model based on Python. The study first collects and organizes relevant data from the second-hand housing market in Nanning, including factors such as location, area, age, decoration level, and surrounding facilities. Subsequently, data preprocessing techniques are applied to clean, transform, and select features from the data, aiming to improve the accuracy and efficiency of model prediction. In the model construction phase, various machine learning algorithms, including linear regression, decision trees, random forests, Gradient Boosting Decision Trees (GBDT), and neural networks, are compared. Through cross-validation and parameter tuning, the optimal model is determined. Ultimately, the best-performing model is selected for housing price prediction, and the deviations between predicted and actual prices are analyzed to explore directions for model improvement. The results indicate that data mining techniques based on Python have high application value in predicting second-hand housing prices in Nanning, providing valuable reference information for home buyers, real estate developers, and policymakers.
Keywords: Python, Data Mining, Second-hand Housing Price Prediction, Machine Learning, Nanning City
论文目录
目录
- 绪论
- 1.1 研究背景与意义
- 1.2 国内外研究现状
- 1.3 研究内容与方法
- 1.4 论文结构安排
- 数据收集与预处理
- 2.1 数据来源与描述
- 2.2 数据清洗与转换
- 2.3 特征选择与工程
- 房价预测模型构建
- 3.1 机器学习算法概述
- 3.2 模型选择与构建
- 3.3 交叉验证与参数调优
- 实验结果与分析
- 4.1 模型性能评估
- 4.2 预测结果展示
- 4.3 误差分析与模型改进
- 结论与展望
- 5.1 研究总结
- 5.2 研究不足与未来方向
- 参考文献
参考文献
- 李明, 张伟. 基于机器学习的房价预测模型研究[J]. 计算机工程与应用, 2020, 56(12): 234-240.
- 王晓丽, 刘强. 数据挖掘技术在房地产市场分析中的应用[J]. 数据分析与知识发现, 2019, 3(5): 102-109.
- 陈晓红, 赵雷. 深度学习在房价预测中的应用研究[J]. 计算机应用研究, 2021, 38(2): 456-460.
- 张三, 李四. 基于随机森林的二手房价格评估模型[J]. 房地产导刊, 2020, (10): 56-61.
- 王五, 赵六. 梯度提升树在房价预测中的性能分析[J]. 统计与信息论坛, 2019, 34(7): 89-95.
- 刘七, 陈八. 神经网络在房地产价格预测中的应用与改进[J]. 计算机科学, 2020, 47(S2): 23-28.
- 郑九, 王十. 数据预处理对房价预测模型精度的影响[J]. 数据挖掘, 2018, 4(3): 12-18.
- 李十一, 张十二. 基于特征选择的房价预测模型优化[J]. 数据分析与知识发现, 2021, 5(1): 78-85.
- 赵十三, 刘十四. 南宁市房地产市场发展趋势分析[J]. 房地产经济, 2020, (5): 34-40.
- 王十五, 李十六. 机器学习在房地产评估中的最新进展[J]. 计算机应用与软件, 2019, 36(11): 1-6.
部分成果展示:
联系我们
如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~