教材: 王万良《人工智能导论》(第5版) 高等教育出版社,2020
1956年正式提出人工智能(artificial intelligence, AI)这个术语并把它作为一门新兴科学的名称。
20世纪三大科学技术成就:
- 空间技术
- 原子能技术
- 人工智能
1.1 人工智能的基本概念
1.1.1 智能的概念
- 自然界四大奥秘:物质的本质、宇宙的起源、生命的本 质、智能的发生。
- 对智能还没有确切的定义,主要流派有:
(1)思维理论:智能的核心是思维
(2)知识阈值理论:智能取决于知识的数量及一般化程度
(3)进化理论:用控制取代知识的表示 智能是知识与智力的总和
- 智能是知识与智力的总和
知识是一切智能行为的基础、智能是获取知识并应用知识求解问题的能力
1.1.2 智能的特征
1.感知能力:通过视觉、听觉、触觉、嗅觉等感觉器官感知外部世界的能力。
80%以上信息通过视觉得到,10%信息通过听觉得到。
2.记忆与思维能力
记忆:存储由感知器官感知到的外部信息以及由思维所产生的知识
思维能力:对记忆的信息进行处理
(1)逻辑思维(抽象思维)
- 依靠逻辑进行思维。
- 思维过程是串行的。
- 容易形式化。
- 思维过程具有严密性、可靠性。
(2)形象思维(直感思维)
- 依据直觉。
- 思维过程是并行协同式的。
- 形式化困难。
- 在信息变形或缺少的情况下仍有可能得到比较满意的结果。
(3)顿悟思维(灵感思维)
- 不定期的突发性。
- 非线性的独创性及模糊性。
- 穿插于形象思维与逻辑思维之中。
3. 学习能力
学习既可能是自觉的、有意识的,也可能是不自觉的、无意识的;既可以是有教师指导的,也可以是通过自己实践的。
4. 行为能力(表达能力)
人们的感知能力:用于信息的输入。行为能力:信息的输出。
1.1.3 人工智能
人工智能:用人工的方法在机器(计算机)上实现的智能;或者说是人们使机器具有类似于人的智能。
人工智能学科:一门研究如何构造智能机器(智能计算机)或智能系统,使它能模拟、延伸、扩展人类智能的学科。
图灵测试:1950年图灵发表的《计算机与智能》中设计了一个测试,用以说明人工智能的概念。
中国屋思考实验:
语言哲学家约翰.R.塞尔(John R. Searle,1980)
●锁在屋里的看不懂卡片上汉字的人,根据英文说明书把从门缝中得到的汉字与屋内的汉字进行匹配然后扔出去,从外观上看好像这个人懂中文,而且正确匹配的速度会越来越快,实际上他不懂中文。
●证明:即使通过图灵测试也不能说明计算机能思维。
1.2 人工智能的发展简史
1.2.1 孕育(1956年之前)
公元前,亚里斯多德(Aristotle):三段论
培根(F. Bacon):归纳法
莱布尼茨(G. W. Leibnitz):万能符号、推理计算
布尔(G. Boole):用符号语言描述思维活动的基本推理法则
1936年,图灵:图灵机
1943年,麦克洛奇(W. McCulloch)、匹兹(W. Pitts):M-P模型
美国爱荷华州立大学的阿塔纳索夫教授和他的研究生贝瑞在1937年至1941年间开发的世界上第一台电子计算机“阿塔纳索夫-贝瑞计算机(Atanasoff-Berry Computer,ABC)”为人工智能的研究奠定了物质基础。(不是美国数学家莫克利和埃柯1946年发明的!)
1.2.2 形成(1956年-1969年)
1956年夏,当时美国达特茅斯大学数学助教、现任斯坦福大学教授麦卡锡和哈佛大学数学和神经学家、现任MIT教授明斯基、IBM公司信息研究中心负责人洛切斯特、贝尔实验室信息部数学研究员香农共同发起,邀请普林斯顿大学莫尔和IBM公司塞缪尔、MIT的塞尔夫里奇和索罗莫夫以及兰德公司和卡内基-梅隆大学的纽厄尔、西蒙等10名年轻学者在达特莫斯大学召开了两个月的学术研讨会,讨论机器智能问题。
会上经麦卡锡提议正式采用“人工智能”这一术语,标志着人工智能学科正式诞生。麦卡锡因而被称为人工智能之父。
此后,美国形成了多个人工智能研究组织,如纽厄尔和西蒙的Carnegie RAND协作组,明斯基和麦卡锡的MIT研究组,塞缪尔的IBM工程研究组等。
1.2.3 发展(1970年- )
20世纪60年代末,人工智能研究遇到困难,如机器翻译。1966年美国顾问委员会的报告裁定:还不存在通用的科学文本机器翻译,也没有很近的实现前景。英国、美国中断了大部分机器翻译项目的资助。
1977年,费根鲍姆在第五届国际人工智能联合会议上提出了“知识工程”概念,推动了知识为中心的研究。专家系统的研究在多领域取得重大突破。这个时期也称为知识应用时期。
不确定性知识的表示与推理取得了突破,建立了主观Bayes理论、确定性理论、证据理论等,对人工智能中模式识别、自然语言理解等领域的发展提供了支持。
1986年之后也称为集成发展时期。计算智能(Computer Intelligence, CI)弥补了AI在数学理论和计算上的不足,丰富了AI理论框架,使人工智能进入了一个新的发展时期。
1.2.4 大数据驱动发展期(2011年- )
物联网、大数据、云计算、人工智能相互促进
专用人工智能:面向特定任务(比如下围棋)的人工智能称为专用人工智能。
专用人工智能处理的任务需求明确、应用边界清晰、领域知识丰富,在局部智能水平的单项测试中往往能够超越人类智能。例如,AlphaGo战胜人类围棋冠军;大规模图像识别和人脸识别达到或超越人类;识别医学图片等达到专业医生水平 。
通用人工智能:通用人工智能可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题。
人工智能的发展方向是通用人工智能。通用人工智能尚处于起步阶段。
1.3 人工智能研究的基本内容
1. 知识表示
知识表示:将人类知识形式化或者模型化。
知识表示方法:符号表示法、连接机制表示法。
- 符号表示法:用各种包含具体含义的符号,以各种不同的方式和顺序组合起来表示知识的一类方法。例如,一阶谓词逻辑、产生式等。
- 连接机制表示法:把各种物理对象以不同的方式及顺序连接起来,并在其间互相传递及加工各种包含具体意义的信息,以此来表示相关的概念及知识。例如,神经网络等。
2. 机器感知
机器感知:使机器(计算机)具有类似于人的感知能力。以机器视觉(machine vision)与机器听觉为主。
3. 机器思维
机器思维:对通过感知得来的外部信息及机器内部的各种工作信息进行有目的的处理。
4.机器学习
机器学习(machine learning):研究如何使计算机具有类似于人的学习能力,使它能通过学习自动地获取知识。
图:监督学习(有教师学习)
5. 机器行为
机器行为:计算机的表达能力,即“说”、“写”、“画”等能力。
1.4 人工智能的主要研究领域
上面的序号是本节的小点,之后我们的章节就是分别对上面的重要领域进行底层原理的学习
补充知识:
人工智能的三大流派:符号主义、连接主义、行为主义,它们在不同的研究领域中占据主导地位。
1. 符号主义(Symbolism) —— 逻辑推理与知识表示
核心思想:基于符号、规则和逻辑推理来模拟人类智能。
对应领域:
- 自动定理证明(利用逻辑规则进行数学推理)
- 博弈(通过规则和决策树求解)
- 专家系统(基于规则和知识库推理)
- 自然语言理解(早期基于规则的NLP)
- 智能信息检索(基于知识库的搜索方法)
2. 连接主义(Connectionism) —— 神经网络与机器学习
核心思想:模拟人脑神经元网络,通过数据驱动学习。
对应领域:
- 人工神经网络(核心技术,如深度学习)
- 模式识别(人脸识别、物体识别等)
- 计算机视觉(通过神经网络进行图像识别)
- 语音识别(深度学习优化语音转换)
- 数据挖掘与知识发现(基于深度学习进行大数据分析)
3. 行为主义(Behaviorism) —— 机器人与强化学习
核心思想:强调与环境的交互,通过试错学习(强化学习)来获取智能。
对应领域:
- 机器人(自动驾驶、无人机等)
- 智能控制(强化学习优化控制策略)
- 分布式人工智能 & 多智能体(多个智能体协作)
- 智能仿真(基于环境交互的训练)
- 博弈(强化学习用于游戏AI,如AlphaGo)
总的来说,符号主义擅长逻辑推理和知识表示,连接主义擅长数据学习和模式识别,行为主义擅长机器人和强化学习。