自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

大家好鸭!这里记录着我的学习路程和心路。

希望大家都能有所收获!出发永远都是最有意义的事情,或南或北,能走多远就走多远,希望大家都能通过自己的努力不后悔,不害怕。

  • 博客(34)
  • 收藏
  • 关注

原创 深入解析 Vision Transformer (ViT) 与其在计算机视觉中的应用

VisionTransformer(ViT)是一种基于Transformer架构的视觉模型,它在计算机视觉任务中表现出色,甚至超越了传统的卷积神经网络(CNN)如ResNet。ViT通过将图像分割成小块,并将这些块转换为向量序列,利用自注意力机制处理图像数据,从而捕捉长距离依赖关系。ViT在大规模数据集上的预训练过程中展现出显著优势,尤其是在全局依赖建模和表示能力方面。尽管ViT在计算资源上要求较高,但其在大数据集上的优异表现预示着它可能成为未来计算机视觉领域的主流方法

2025-05-11 19:36:12 1318

原创 LIDC-IDRI数据集切割代码教程【pylidc库】

数据集:通过网盘分享的文件:LIDC链接:提取码: ywb8代码:通过网盘分享的文件:LIDC-IDRI-Preprocessing.rar链接:提取码: b1za【代码里的部分数据就不删了,方便你们照着放】

2025-04-26 20:02:21 1161 6

原创 YOLOv8融合CPA-Enhancer【提高恶略天气的退化图像检测】

CPA-Enhancer通过链式思考提示机制实现了对未知退化条件下图像的自适应增强,显著提升了物体检测性能。其插件式设计便于集成到现有检测框架中,并在物体检测及其他视觉任务中设立了新的性能标准,展现了广泛的应用潜力。│▼[Conv + BN + ReLU](通用预处理)│├─► 分支1:多尺度卷积提取├─► 分支2:亮度补偿模块├─► 分支3:注意力增强机制(通道注意力+空间注意力)└─► 分支4:上下文结构感知(Transformer 模块等)│▼[特征融合 + 残差连接]│▼。

2025-04-24 21:30:47 980

原创 可变形卷积(可以观察到变形图片的卷积)【DCNv1、DCNv2、DCNv3】

在 DCNv1 的基础上引入调制机制(modulation),为每个采样点增加一个可学习的标量权重。引入可学习的偏移量,使卷积核的采样位置不再固定,而是根据图像内容动态调整。但现实中的图像并不整齐——比如猫的身体弯着、车被遮挡、手是歪的,,把“采样点该往哪看”和“采样点贡献大小”这两件事一次性学完,并。在普通的卷积操作中,比如 3×3 卷积,采样的位置总是。的:就是中间一个点,四周八个点,整齐地排成一个小网格。,为每个采样点增加一个可学习的权重。,进一步提升计算效率和适配能力。

2025-04-24 16:32:26 976

原创 YOLOV8添加可变形卷积(DCNv2)增强空间注意力

device='cou.参数意思是:你电脑是GPU你就埴0,CPU就埴cpu,GPU是有英伟达显卡的电脑使用的,如果没有英伟达显卡训练非常慢,因为我电脑没有英伟达显卡,这里训练只用了几张数据集进行测试,你们也可以租云服务器训练,方法都是一样的,后期有空会出一起环境配置视频,我以前的作品也有环境配置教程的,你们可以翻一下看看测试一下训练,打印出来的YOLOv8结构可以看到添加可变性卷积成功。该文件路径为:ultralytics/nn/tasks.py,在开头导入C2f_DCN,添加如截图所示。

2025-04-23 15:31:45 1031 2

原创 deeplab系列秒懂(v1,v2,v3,v3+)

CRF,全称是Conditional Random Field(条件随机场),是一种图模型,常用于序列/图像的标签优化问题。在图像中我们可以把每个像素看成一个节点,CRF 就在这些节点之间建立关系,进行“全图优化目标:根据图像的原始颜色、纹理等低级信息,把 CNN 的粗糙预测边界“拉回来”,更精细地拟合真实边界。编码器(Encoder):理解图像内容,压缩信息解码器(Decoder):恢复图像空间结构,细化信息DeepLabv3+结合了DeepLabv3。

2025-04-18 12:13:34 2194

原创 空洞卷积(膨胀卷积/扩张卷积)本质理解

空洞卷积=给卷积核“插空”,以扩大感受野但不增加计算和参数,在语义分割中大放异彩,但也容易引入栅格效应,需要多尺度融合等方式优化。

2025-04-17 20:13:51 1050

原创 目标分割模型优化自身参数都是梯度下降算法吗?

输入图像 →前向推理 →计算损失 →反向传播 →梯度更新参数 →优化模型性能损失函数设计网络结构复杂度梯度传播机制优化器选择这些差异虽然不会改变“用梯度下降”这一核心机制,但会影响训练的速度、稳定性、最终性能。CNN、FCN、U-Net、DeepLab 等模型本质上都是基于梯度下降优化参数,但由于任务目标、网络结构、损失函数设计和优化策略不同,它们的训练过程在细节上具有显著差异。问题答案是否都使用梯度下降?✅ 是,核心优化逻辑相同网络结构影响优化吗?

2025-04-17 19:16:58 736

原创 目标分割小白应知应会【用人话说卷积核、channel、上下采样、感受野是啥】

输出特征图上某一个像素点所“看到”的输入图像区域大小。若第一层卷积是 3×3,则每个输出像素“看”3×3 的输入区域。第二层卷积再次使用 3×3,其输出像素就“看”到了第一层输出的 3×3 区域,即原图上的 5×5 区域。感受野随着层数加深逐渐扩大。如果卷积核大小为 k,stride=1,padding=(k-1)/2,则每一层感受野增加 k-1。感受野增长快慢不仅与卷积核有关,还与是否下采样(stride > 1)有关。下采样的感受野增长速度更快,因为每一层像素代表更大的输入区域。

2025-04-17 17:22:48 625

原创 FCN——首个端对端的针对语义分割领域的全卷积网络

FCN(Fully Convolutional Network,全卷积神经网络)最早由 Jonathan Long 等人于 2015 年提出。它的核心理念是:将传统 CNN 中的全连接层(Fully Connected Layer)替换为卷积层或转置卷积层;网络结构能够接受任意尺寸的输入图像,输出相同尺寸的像素级类别预测;整个模型可通过反向传播进行端到端训练。

2025-04-17 09:45:37 716

原创 卷积神经网络CNN到底在卷些什么?

卷积层关注的是“哪里有什么特征”,而全连接层关注的是“这些特征说明这是什么”。t=P1C7卷积神经网络(CNN)到底卷了啥?8分钟带你快速了解!_哔哩哔哩_bilibili卷积神经网络(CNN)到底卷了啥?8分钟带你快速了解!共计2条视频,包括:卷积神经网络(CNN)到底卷了啥?、什么是循环神经网络?RNN的变体LSTM和GRU的运作原理又是怎样的?(人工智能丨深度学习丨机器学习丨自然语言处理)等,UP主更多精彩视频,请关注UP账号。

2025-04-14 17:54:52 787

原创 转置卷积(反卷积)本质理解

简单说:卷积核(也叫 filter)是一个小矩阵,比如 3×3、5×5、7×7 的方块,它在图像上“滑动”做卷积运算。每个卷积核里面的元素就是一堆数字卷积核(3x3):[ w₄ w₅ w₆ ] ← 这 9 个 w,就是训练过程中要学的参数卷积核=一个小矩阵,里面仿放的一组待学习的参数,它会在训练中不断被优化,自动“学会”提取对分类/分割/检测有用的特征。

2025-04-08 09:46:31 1075

原创 U-Net网络+代码实操【保姆级教程深刻理解、一文全搞懂】

dice_coeff是怎么计算的?dice_coeff先把预测的结果和真实标签展开成一维数组。计算它们的重叠区域(就是预测对的部分)。然后算出总区域(预测区域加上真实区域的大小)。最后,计算出 Dice 系数:重叠区域越大,Dice 系数越高。如果有某些部分需要忽略(比如标记为的区域),它会自动跳过这些部分,确保不计算这些区域。训练过程的核心就是通过反向传播计算梯度,并通过梯度下降来更新模型的参数,学习率决定了每次更新的步伐。

2025-04-05 22:38:12 1995

原创 计算机视觉五大技术——深度学习在图像处理中的应用

深度学习是利用“多层神经网络”实现人工智能的一种方式计算机视觉:“对图像中的客观对象构建明确而有意义的描述”,识别图片中的含义进行处理。

2025-04-04 19:34:30 1483

原创 机器学习 第二章 模型评估与选择【说人话版必能理解】

我们要评估模型,也就是要求得泛化误差,所有我们通过在测试集上的误差来拟代表在所有未知严格样本上的泛化误差,那么我们本节的问题就是如何划分训练集和测试集。在不同任务中,根据不同的任务需求截断点不同,截断点就是判断好瓜和坏瓜的分界线,例如:大于这个点就是好瓜,小于这个点就是坏瓜。方差【本次lable-平均lable】:有的考试发挥好,有的考试发挥不好,方差就是本次的考试发挥与平均考试发挥的差距。虽然模型的错误率一致,但是由于错误情况付出的代价不同,所有我们把代价加入考虑,判断模型的好坏。

2025-04-03 22:22:57 745

原创 机器学习 第一章 绪论

机器学习的目标就是构建函数的过程,通过x和y努力找到f(x)。假设x为经验,以数据的方式存在,也就说,机器学习就是是利用“学习算法”将数据中的经验抽取到模型(计算流程=y怎样通过x得到=f(x))中的过程。“学习算法”就是有学习能力的黑箱,那我们肯定就期望得到学习能力非常强大的黑箱,所以机器学习就是研究“学习算法”的学问。

2025-04-01 16:12:28 723

原创 人工智能导论 第一章 绪论

教材: 王万良《人工智能导论》(第5版) 高等教育出版社,20201956年正式提出人工智能(artificial intelligence, AI)这个术语并把它作为一门新兴科学的名称。

2025-03-26 15:30:48 1207

原创 启蒙学习从0开始科普:一口气搞懂人工智能和神经网络

达特茅斯会议:(祖师爷)达特茅斯会议(Dartmouth Conference)是人工智能领域的奠基性会议,通常被视为人工智能学科的“诞生”时刻。该会议于1956年在美国新罕布什尔州达特茅斯学院(Dartmouth College)举行,是由约翰·麦卡锡(John McCarthy)、马文·闵斯基(Marvin Minsky)、奈瑟姆·卡普尔(Nathaniel Rochester)和克劳德·香农(Claude Shannon)等科学家发起的。达特茅斯会议的召开旨在探讨。

2025-03-26 10:50:48 847

原创 人工智能赋能山西乡村振兴:智能空间规划与可持续发展

乡村基础设施的智能化是推动乡村振兴的重要一环。随着人工智能技术的不断发展,乡村振兴的步伐正在加快,尤其是在空间规划、产业发展、生态保护等领域,AI技术能够提供精准的数据分析和科学决策支持,推动乡村空间的优化和改造。这个平台可以集成大数据、物联网和云计算等技术,实时监控乡村的土地、环境和资源情况,通过智能化的分析和优化方案,为乡村提供精准的空间规划建议,确保土地资源的高效利用和可持续发展。因此,借助人工智能技术的快速发展,推动乡村空间规划与生态修复,提升基础设施和产业发展,成为山西乡村振兴的迫切需求。

2025-03-23 18:39:47 1259

原创 DeepSeek、Grok 与 ChatGPT 4.5:新一代大模型架构与推理能力深度解析

近年来,大语言模型(LLM)领域发展迅猛,DeepSeek、Grok 以及 OpenAI 最新发布的 ChatGPT 4.5 都是该领域的代表性产品。本文将从架构设计、推理能力、训练策略等方面,对三者进行技术对比,探讨其优势与潜在的应用场景。DeepSeek 采用 Transformer 架构,并在预训练阶段结合了 MoE(Mixture of Experts) 技术以提升推理效率。其架构特点包括:Grok 由 xAI(Elon Musk 创立)研发,并深度集成于 X 平台。其技术特点包括:OpenAI 的

2025-03-22 20:14:55 1367

原创 minio图床全套开发流程完整版

本教程将指导你如何使用 Docker 部署 MinIO,并在 Spring Boot 项目中集成 MinIO 进行文件存储、上传、下载和管理。Minio容器部署教程在这里👇MinIO安装与启动【windows】_minio启动-CSDN博客本文介绍了MinIO对象存储服务的下载与启动流程,包括创建minio目录、设置用户密码、使用.bat脚本自动化启动,以及如何创建和管理桶以及访问权限。

2025-03-22 19:31:45 727

原创 【混合微服务部署】一文速成秒懂!非常简单

在现代软件开发中,微服务架构逐渐成为主流,而合理的部署方案至关重要。本教程介绍基于 Docker Compose 的混合部署方案,以实现高效、可扩展、易维护的服务架构。

2025-03-22 19:13:40 575

原创 搭建简易的rtsp服务器

本文介绍的是mediamtx服务器(原rtsp-simple-server)的配置,附带一个关于nginx搭建可用rtsp转接为http端可直接访问的方案。

2025-03-21 18:58:16 1760

原创 【如何借助deepseek进行开发】认知大模型Prompt开发学习

已知成果有7个领域:能源革命、绿色低碳、农业特优、文旅融合、生命健康、教育事业、城市管理。现在提供一个企业相关的需求数组:['利用企业自有原料,实现降低成本','研发生产轻质混凝土,耐火混凝土','扩大本市场区域竞争力','会计'],分别代表:技术、产品、服务、人才需求。请返回一个JSON数组,数组中的值为成果领域对应的分值,总分为5,如[3,5,1,2,3,0,5]。大致逻辑:执行Save成功后,异步调用领域指数生成。每新增一个企业需求时,读取需求,生成领域指数。

2025-03-20 16:37:19 1038

原创 【eletron打包Vue/Vite、Inno发布安装驱动】全网最快最简单一定能成功看这篇就好!

文末附优质博客和一些资源前言:源自于学校课设C/S系统开发,在全网查询了50多个博客之后get到了最简单的开发方法,规避环境加载失败,切换镜像源后依然安装不成功环境的问题总共分为三步:1.打包vue为dist2.将dist打包为exe3.将exe以及运行环境发布成安装驱动。

2025-02-28 20:59:03 933

原创 【机器学习】—— 机器学习预测热电材料

本研究的主要目的是构建并利用HH130数据库,以提高机器学习模型在原子间势的建模精度,并应用于预测半赫斯勒热电材料的热输运特性,旨在通过机器学习模型提高计算效率,并帮助研究人员探索材料设计的新策略,从而推动高性能热电材料的开发。密度泛函理论计算虽然准确,但其在大规模材料系统和高温动力学过程中的应用存在计算成本高、效率低的问题,面临显著的计算瓶颈,本研究希望通过训练机器学习势能模型,以更快的速度完成对材料热力学和力学性质的预测,实现大规模材料筛选和模拟。

2024-11-22 19:21:41 1354

原创 【深度学习】——目标分割(开源数据集、代码、模型介绍)

全卷积(convolutional):采样端对端的卷积网络,将普通分类网络的全连接层换上对应的卷积层(FCN) 上采样(upsample):即反卷积(deconvolution),恢复图片的位置信息等,反卷积层可以通过最小化误差学习得到。图像上子区域的集合,或是从图像中提取的轮廓线的集合(例如边缘检测)。Dice系数通过计算预测分割结果和实际目标区域之间的重叠部分,给出一个衡量两者相似度的评分,平均Dice系数是所有类别的Dice系数的平均值,用来综合评估模型在所有类别上的分割表现。(像素的集合)的过程。

2024-11-16 22:10:36 813

原创 LIDC-IDRI肺结节数据集分割策略

翻译此Github:上述代码本地运行时会出现报错,代码已修改,数据集为方便分割已修改为生成image,mask为png格式。具体代码,image,mask以及unet,unet++,deeplabv3的分割结果请看资源。整个过程分为3个步骤:数据预处理,训练分割模型,训练分类模型。

2024-10-25 23:19:36 1619 2

原创 RTSP服务器连接教程

rtsp://47.XXX.XXX.XXX:20014/h264/ch3/main/av_stream:这是输出的目标 RTSP 流地址,FFmpeg 会将从源摄像头接收到的流转发到该地址。rtsp://47.XXX.XXX.XXX:20014/h264/ch1/main/av_stream:这是将模拟的 RTSP 流推送到的目标地址。该参数后面跟的是输入 RTSP 流的地址,即来自摄像头或其他设备的视频流源。-c:a aac:指定音频编码器为 AAC,这是一种常见的音频格式,适合流媒体传输。

2024-10-07 17:44:27 1401 1

原创 前后端对接、vue部署、Nginx部署、Java部署【全套部署流程】

首先要前端电脑要ping通后端服务器,保证两台电脑在同一局域网下。前端访问地址:localhost——>192.168.1.2。nginx部署成功后,将dist文件夹传至html下。部署成功后会出现nginx默认页面。设置项目版本,打包对应的Jar包。有数据返回则代表已ping通。后端关闭防火墙,配全局跨域。

2024-09-18 10:54:24 547

原创 Java微信公众号提醒开发【保姆级教程】

填写域名:09f7-2408-8226-8f12-aab0-b1-c083-28f4-f8ab.ngrok-free.app,没有http。这里的微信号即为open_id,但正式开发一定要自己获取open_id。启动内网穿透:ngork http 7676。填入自己的open_id和模板数据进行测试。注意:与微信公众号测试交互,必须内网穿透。,开放对应的后端端口。

2024-09-12 17:41:30 2267 1

原创 阿里云云效私有仓库同步+流水线部署【大型企业都在用!】

阿里云云效,最真实,最有用!

2024-07-21 20:43:18 1207

原创 Github Actions自动化部署——自动上服流水线

Github Actions自动化部署——自动上服流水线,关于CI/DI

2024-07-14 16:49:53 1468

原创 【Java】真真真有用-Excel完美实现导入导出(有填雷)

excel快速完美整合,有填坑

2024-04-02 20:35:26 866 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除