-
1.1什么是hive
-
hive简介
Hive:由FaceBook开源用于解决海量结构化日志的数据统计工具
Hive:基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL的查询功能。
-
Hive本质
将HSQL转化成MapReduce程序
1.Hive处理的数据存储在HDFS
2.Hive分析数据底层实现的是MR
3.执行程序运行在Yarn上
1.2 Hive的优缺点
1.2.1 优点
接口采用类SQL语法,提供快速开发的能力
避免了去写MR程序,减少开发人员的学习成本
Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合
Hive的优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高
Hive支持自定义函数,用户可以根据自己的需求来实现自己的函数
1.2.2 缺点
1.Hive的HSQL表达能力有限
2.迭代算法无法表达
3.数据挖掘方面不擅长,由于MR数据处理流程的限制,效率更高的算法却无法实现
4.Hive的效率 比较低
5.Hive自动生成的MR作业,通常情况下不够智能化
6.Hive调优比较困难,粒度较粗
1.3 Hive运行机制
Hive通过用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(Metastore),将这些指令翻译成MR,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
1.4 Hive和数据库比较
由于Hive采用类似SQL的查询语言HQL,因此很容易将Hive理解为数据库。其实从结构来看,Hive 和数据库除了用于类似的查询语言,
再无类似之处。
1.4.1 数据更新
由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少。因此,Hive中不建议对数据的改写,所有数据都是在加载的时候
确定好的。而数据库中的数据通常是需要进行修改的,因此可以采用insert into ... values添加数据,使用update ... set修改数据
1.4.2 执行延迟
Hive在查询数据的时候,由于没有索引,需要扫描整个表。因此延迟较高。由于Hive底层使用的MR框架,而MR本身具有较高的延迟,因此
在利用MR执行Hive查询的时候,也有较高的延迟。
1.4.3 数据规模
由于Hive简历在集群上可以利用MR进行并行计算,因此可以支持很大规模的数据。对应的,数据库可以支持的数据规模较小。