R
文章平均质量分 80
EricWang1358
这个作者很懒,什么都没留下…
展开
-
[R] Data Science Lecture Revision
1.2.3.4.5.None6.7.8.None9.10.11.12.13.原创 2024-04-23 23:35:24 · 206 阅读 · 0 评论 -
[R] Some checks for whether your model are biased
或默认情况下未被检测到的影响性案例。这是因为它不再专注于系数估计的变化,而是关注整个模型的稳定性和预测能力。这可能会导致一些之前未被注意到的观测值被标记为影响性案例,因为它们对模型的整体性能有较大的影响,但对单个系数的影响不明显。函数可能会识别出一些在。原创 2024-04-10 23:00:57 · 990 阅读 · 0 评论 -
[R] Who can be a manager in the golf industry: An example of binary regression model using R Studio
jtools包中的函数可以导出一个模型或多个模型的摘要统计信息,这对于比较不同模型的性能非常有用。# 导出logitman1、logitman2和logitman3模型的摘要统计信息这里的scale=TRUE参数表示将统计量按比例缩放,以便于比较。原创 2024-04-10 21:33:14 · 927 阅读 · 0 评论 -
[R] How to use R to analyze the relationship between two categorical variables
比例预期测量(PEM)是一种统计工具,用于理解列联表中两个分类变量之间的关系。它测量表格中每个单元格的观察频率与预期频率的偏差,以预期频率的百分比表示。预期频率是在变量之间没有关联的情况下我们所预期的频率。PEM有助于探索变量关系的细微差别,不仅仅是知道它们是否相关。它帮助我们了解哪些特定类别在推动关联。原创 2024-04-01 17:33:23 · 865 阅读 · 0 评论 -
[R] Analysis with CrossTable() function (Cramer’s V)
这部分的输出是基于 Fisher's Exact Test 的列联表关联度量(Measure of Association)的结果,对于两个分类变量之间的关系进行统计分析。(卡方值):这是一个统计量,用于衡量观察值与期望值之间的偏差程度。较高的卡方值表示观察到的频率与期望频率之间的差异较大。(克拉默V系数):这是用于测量两个分类变量之间关联强度的指标。它的取值范围为0到1,值越接近1表示关联程度越高,0表示无关联。(自由度):自由度是卡方分布的参数之一,它表示可以自由变化的独立观测值的数量。原创 2024-03-21 17:56:34 · 992 阅读 · 0 评论 -
[R] Introduction to Crosstable
这个表格的结果显示,教育水平(infert$education)和诱发因素(infert$induced)之间存在显著关系(p值为0.002383898),即它们不是独立的。这个表格是一个交叉表(CrossTable),展示了两个变量(infert$education和infert$induced)之间的关系。:每个单元格中的观测数量占表格总观测数量的比例。:每行的总计,即每个教育水平下的总观测数量。:每列的总计,即每个诱发因素下的总观测数量。:每个单元格中的观测数量占其列总计的比例。:表中的总观测次数。原创 2024-03-21 17:24:01 · 342 阅读 · 0 评论 -
[R] ggplot2: stat= 后面可以跟 count, bin, identity, 各自有什么用?
在ggplot2中,stat参数用于指定统计变换,它决定了如何处理数据以生成图形。: 用于计算每个组的观测数量。这通常用于条形图 (geom_bar),其中每个条形的高度代表该组中的观测数。: 用于创建直方图 (它将连续数据分成若干个区间(或“箱”),并计算每个箱中的观测数。直方图是一种展示数据分布的常用方法。: 表示数据不需要进行任何统计变换。这在你已经预先计算好了要展示的值时非常有用。例如,当你使用geom_bar来创建条形图,且数据框中已经包含了每个条形的高度时,你可以设置以下是一些使用, 和。原创 2024-03-17 18:21:22 · 1939 阅读 · 0 评论 -
[R] TUT6 test 纠错
这段代码将创建一个密度图,显示了学生是否要求教师修改最终成绩与他们的实际 GPA 之间的关系。问题 8 的代码看起来是从另一个数据集的示例复制过来的,因此它引用了不存在于。如果这些变量有不同的名称,请相应地调整代码。数据集中的相应变量。为了修正这个问题,你需要将代码更改为使用。原创 2024-03-17 18:00:19 · 369 阅读 · 0 评论 -
[R] What else is needed for pie chart?
这行代码使用了CrossTable函数,来自gmodels包,用于创建一个交叉表(或列联表)。这个函数非常适合用于查看两个分类变量之间的关系。在这个例子中,它被用来查看这一列的数据分布。| N |: 指定了数据集中的列,这可能是一个表示学生跟随的一般教育课程(GEC)的分类变量。: 这个参数表示在交叉表中显示列百分比。这有助于理解每个类别在总体中所占的比例。总的来说,这行代码用于生成一个交叉表,显示类别的分布情况,并计算每个类别的百分比。这对于快速了解数据的分布情况非常有用。原创 2024-03-17 17:41:21 · 897 阅读 · 1 评论 -
[R] 饼图 (Pie Chart); 条形图 (Bar Chart);直方图(Histogram with density)
这种设置会使得所有的条形都从相同的基线开始,可能会导致条形之间的重叠。: 这种设置会将每个条形的高度调整为相同的值,但保留不同类别在条形中的比例。: 这是默认的设置,它会将不同类别的条形堆叠在一起。这种方式适合于展示总体的分布情况,但不便于比较不同类别之间的差异。分面显示的直方图,其中每个部门的直方图显示了不同性别学生的 BMI 分布情况。: 自定义图表主题,在从柱状图转化为饼图之后,需要移除不必要的元素。: 调整条形图的堆叠方式,使每个堆叠的条形高度相同,便于比较比例。的不同类别分面显示图表。原创 2024-03-17 17:16:10 · 1078 阅读 · 0 评论 -
[R] Graphing the relation between two variables
【代码】[R] Graphing the relation between two variables。原创 2024-03-07 12:29:44 · 875 阅读 · 0 评论 -
[R] Underline your idea with ggplot2
接下来,让我们讨论如何编辑图例中的文本元素并改变图形的主题。在R中,我们可以使用。# 今天我们将学习如何在图形中添加信息,编辑图例中的文本元素,并改变主题。# 介绍:之前的教程中,我们学习了如何使条形图或直方图看起来更好。# 使用条形图进行两个分类数据的数据可视化,并学习新的自定义设置。# 编辑图例中的文本元素并改变主题使用theme()# 例如,平衡、强调、运动、模式、重复、节奏和多样性。# 添加图形中的信息使用geom_text()# 示例:改变坐标轴文本的大小和位置。在R中,我们可以使用。原创 2024-03-06 22:22:44 · 1277 阅读 · 0 评论 -
[R] ggplot2 - exercise (“fill =“)
ggplot2-CSDN博客。原创 2024-03-06 21:24:04 · 999 阅读 · 0 评论 -
[R]To delete a dataset from the environment
【代码】[R]To delete a dataset from the environment。原创 2024-03-06 18:10:50 · 703 阅读 · 0 评论 -
[R] count the number of numeric columns: sapply & lapply
【代码】[R] count the number of numeric columns: sapply & lapply。原创 2024-03-01 15:23:01 · 1237 阅读 · 0 评论 -
[R] to get how many participants in the dataframe and use it
【代码】[R] to get how many participants in the dataframe and use it。原创 2024-03-01 15:08:02 · 522 阅读 · 0 评论 -
[R] dercribe: to get the mean and sd, and print with paste
【代码】[R] dercribe: to get the mean and sd, and print with paste。原创 2024-03-01 15:00:38 · 558 阅读 · 0 评论 -
[R] compare the sum, and report with if{}else if{}
【代码】[R] compare the sum, and report with if{}else if{}原创 2024-03-01 14:50:21 · 602 阅读 · 0 评论 -
[R] na_if: a type mismatch between the data in your factor variable and the value
【代码】[R] na_if: a type mismatch between the data in your factor variable and the value。原创 2024-03-01 14:44:53 · 390 阅读 · 0 评论 -
[R] Levels of the datasets
【代码】[R] Levels of the datasets。原创 2024-03-01 14:29:33 · 1525 阅读 · 0 评论 -
[R] When a variable name contains spaces or special characters, use the backtick sign.
错误: unexpected symbol在"GE_survey$'Q10_What was the average attendance of the GE course you were taking last semester, at the second half of the semester?`<- na_if(GE_survey$'Q10_What"里。原创 2024-03-01 14:12:16 · 430 阅读 · 0 评论 -
[R] Review2before Self-Project
函数用于按行合并(按行绑定)两个或多个对象,这可以是矩阵、数据框(Data Frame)、向量或列表。就像是一个名单收集员,将这两张名单按照行排列,形成一个包含小学生和初中生的合并名单。这让你能够更方便地查看整个学生名单。合并数据之前,确保两者的列数、行数或列名一致是很重要的。函数用于将对象转换为数值型(numeric)。函数用于将指定的值替换为缺失值(NA)。想象你有两张名单,一张是小学生名单,一张是初中生名单,原创 2024-02-25 23:29:04 · 401 阅读 · 0 评论 -
[R] Review1 before Self-Project
的效果是一个长度为12的因子向量,其中每个水平都按照设定的重复次数重复。在这个例子中,"apple"、"salad"、"orange" 这三个水平分别重复了2次,共计12个因子。然后通过levels函数将三个标签转化成"fruit", "veg", "fruit",起到合并的效果。因子应该有一个有限的水平数,即水平的数量应该是有限的,而不是无穷大。如果因子是有序的,那么水平之间应该有一定的顺序关系。每个水平应该是唯一的,没有重复的水平。这里通过函数gl 生成的因子向量。因子中可以包含缺失值,通过。原创 2024-02-25 19:59:16 · 1037 阅读 · 0 评论 -
[R] First Section Revision
【代码】[R] First Section Revision。原创 2024-02-18 22:31:09 · 1161 阅读 · 1 评论 -
[R] Merging and adding info from paper based survey
错误: 找不到对象'CUHKSZ_employment_survey_2' we have a CUHKSZ_employment_survey_2_xls, how can we change the name。是 R 中用于处理因子(factor)变量的函数。在 R 中,factor 是一种特殊的数据类型,用于表示分类变量,它将离散的标签映射到整数值。用于获取或设置 factor 变量的水平(levels),也就是它的不同类别或水平的标签。Notice:(删除第几列)Notice: (改名)原创 2024-01-31 17:49:59 · 965 阅读 · 0 评论 -
[R] Intro for Working on paper based questionnaire
对于小型数据集,直接在Excel中输入数据可能更为简便,省去了学习和使用编程语言的步骤。Excel提供了强大的可视化工具,可以轻松创建图表和表格,有助于数据的初步探索和理解。在Excel中首先输入所有数据相比于首先创建结构然后使用R的方法,有一些优缺点。使用R脚本可以确保对相似数据集的相似操作可以轻松重复,提高了工作的可重复性。R是开源的,有庞大的社区支持,用户可以从社区中获取丰富的资源和解决方案。在Excel中进行数据输入和编辑可以实时更新数据,便于快速查看和调整。原创 2024-01-31 15:22:10 · 919 阅读 · 0 评论 -
[R] Clean the data before analysis
Steps you might take when preparing a new dataset for analysis:Explore and Understand the Data:Handle Missing Values:Convert Data Types:Ensure Consistency:Handle Categorical Variables:Prepare Data for Analysis:Check Compatibility with Functions:Document Yo原创 2024-01-31 14:54:42 · 1162 阅读 · 0 评论 -
[R] Why data manipulation is crucial and sensitive?
Identifying the pattern in cultural consumption, making fancy graph, engage a dialogue between data and the existing literature, refining hypothesis….(done within one months with three to four online meetings with partners = no more than 35 hours to agree原创 2024-01-31 14:01:50 · 1007 阅读 · 0 评论 -
[R] How to get Online datasets
中国学术调查数据资料库CNSDA。原创 2024-01-19 15:44:59 · 388 阅读 · 0 评论 -
[R] Importing, viewing and screening imported data
【代码】[R] Importing, viewing and screening imported data。原创 2024-01-19 15:18:23 · 1228 阅读 · 0 评论 -
[R] Before Working on second-hand data
Initially the user does not know how those data have been collected Initially the user does not know the research project and the research questions of those who designed the survey Why ? 1. Most of the secondhand data are representative data collecte原创 2024-01-15 09:41:00 · 467 阅读 · 0 评论 -
[R] T1: Vectors and simple “describe“
【代码】[R] T1: Vectors and simple “describe“原创 2024-01-12 06:00:00 · 820 阅读 · 0 评论 -
[R] First few steps for using R and Rstudio
【代码】[R]downloading R and Rstudio。原创 2024-01-10 10:31:40 · 1169 阅读 · 0 评论 -
[R] Introduction to R
i.eanova。原创 2024-01-09 11:41:56 · 1404 阅读 · 0 评论