一、实验目的和要求
目的:使用状态空间表示法和状态转换图来解决过河问题
要求:输入:牧师人数(即野人人数)n,小船一次至多载客人数c。
输出:若问题无解,则显示“渡河失败”信息,否则,输出一组最佳方案,用三组(X1,X2,X3)表示渡河过程中的状态,并用箭头输出这些状态之间的迁移:目的状态<- <-中间状态 <- <-初始状态。
二、实验设备和实验环境
1、操作系统:Windows 10/11
2、代码运行环境:C++
三、实验任务
假如有n个牧师和n个野人准备渡河,但只有一条能容纳c个人的小船,为了防止野人侵犯牧师,要求无论在何处,牧师的人数不得少于野人的人数(除非牧师人数为0),且假定两种人都会划船。试设计一个算法,确定它们能否渡过河去,若能,则给出一只小船来回次数最少的最佳方案。调试、运行程序,观察、记录结果并分析。
四、实验预习过程
算法定义:
状态空间:一个问题的全部状态及一切可用算符构成的集合。
常用一个三元组表示为:(S, F, G),其中,S为问题的所有初始状态集合;F为算符的集合;G为目标状态的集合。
状态空间也可用一个有向图来表示,该有向图称为状态空间图。在状态空间图中,节点表示问题的状态,有向边表示算符。
请画出本实验的程序流程图。
//传教士和野人数量都为三,船每次最多运送2人情况下,算法流程图
五、具体代码
#include <iostream>
#include <queue>
#include <set>
#include <tuple>
using namespace std;
// 定义状态的结构体
struct State {
int missionariesLeft;
int cannibalsLeft;
int missionariesRight;
int cannibalsRight;
bool boatOnLeft;
// 状态的构造函数
State(int mL, int cL, int mR, int cR, bool bOL)
: missionariesLeft(mL), cannibalsLeft(cL), missionariesRight(mR), cannibalsRight(cR), boatOnLeft(bOL) {}
// 重载比较运算符,用于状态的集合
bool operator<(const State& other) const {
return tie(missionariesLeft, cannibalsLeft, missionariesRight, cannibalsRight, boatOnLeft) <
tie(other.missionariesLeft, other.cannibalsLeft, other.missionariesRight, other.cannibalsRight, other.boatOnLeft);
}
};
// 检查状态是否有效
bool isValidState(const State& state) {
int mL = state.missionariesLeft;
int cL = state.cannibalsLeft;
int mR = state.missionariesRight;
int cR = state.cannibalsRight;
// 如果食人魔的数量大于传教士,则不合法
if (cL > mL && mL > 0 || cL < 0) return false;
if (cR > mR && mR > 0 || cL < 0) return false;
return true;
}
// BFS搜索解法
void solveProblem() {
queue<pair<State, vector<State>>> bfsQueue;
set<State> visitedStates;
int N, K;
cout << "请输入分别传教士和野人的数量: ";
cin >> N >> K;
State initialState(N, K, 0, 0, true);
cout << endl << "请输入每条船最多乘坐人数: ";
int i = 0;
cin >> i;
// 初始状态
//State initialState(3, 3, 0, 0, true);
bfsQueue.push(make_pair(initialState, vector<State>{initialState}));
visitedStates.insert(initialState);
while (!bfsQueue.empty()) {
State currentState = bfsQueue.front().first;
vector<State> currentPath = bfsQueue.front().second;
bfsQueue.pop();
// 检查是否达到目标状态
if (currentState.missionariesLeft == 0 && currentState.cannibalsLeft == 0) {
cout << "找到解决方案如下:" << endl;
cout << "(左岸传教士,左岸野人,右岸传教士,右岸野人,船的位置)" << endl;
for (const State& state : currentPath) {
cout << "(" << state.missionariesLeft << ", " << state.cannibalsLeft << ", "
<< state.missionariesRight << ", " << state.cannibalsRight << ", "
<< (state.boatOnLeft ? "左岸" : "右岸") << ")" << endl;
}
return;
}
// 生成下一个可能的状态
for (int m = 0; m <= i; ++m) {
for (int c = 0; c <= i; ++c) {
if (m + c == 0 || m + c > i) continue; // 至少一个人划船,最多两个人
// 计算新状态
State newState = currentState;
newState.boatOnLeft = !currentState.boatOnLeft;
if (currentState.boatOnLeft) {
newState.missionariesLeft -= m;
newState.cannibalsLeft -= c;
newState.missionariesRight += m;
newState.cannibalsRight += c;
}
else {
newState.missionariesLeft += m;
newState.cannibalsLeft += c;
newState.missionariesRight -= m;
newState.cannibalsRight -= c;
}
// 检查新状态是否有效且未被访问过
if (isValidState(newState) && visitedStates.find(newState) == visitedStates.end()) {
visitedStates.insert(newState);
vector<State> newPath = currentPath;
newPath.push_back(newState);
bfsQueue.push(make_pair(newState, newPath));
}
}
}
}
cout << "没有找到解决方案." << endl;
}
int main() {
solveProblem();
return 0;
}