CF——1766C - Hamiltonian Wall

题目链接

1766C - Hamiltonian Wall Rating:1300

题目描述

Sir Monocarp Hamilton is planning to paint his wall. The wall can be represented as a grid, consisting of 2 rows and m columns. Initially, the wall is completely white.

Monocarp wants to paint a black picture on the wall. In particular, he wants cell (i,j) (the j-th cell in the i-th row) to be colored black, if ci,j= ‘B’, and to be left white, if ci,j= ‘W’. Additionally, he wants each column to have at least one black cell, so, for each j, the following constraint is satisfied: c1,j, c2,j or both of them will be equal to ‘B’.

In order for the picture to turn out smooth, Monocarp wants to place down a paint brush in some c e l l ( x 1 , y 1 ) cell (x1,y1) cell(x1,y1) and move it along the path ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x k , y k ) (x1,y1),(x2,y2),…,(xk,yk) (x1,y1),(x2,y2),,(xk,yk) so that:

  • for each i, (xi,yi) and (xi+1,yi+1) share a common side;
  • all black cells appear in the path exactly once;
  • white cells don’t appear in the path.

Determine if Monocarp can paint the wall.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1≤t≤10^4 1t104) — the number of testcases.

The first line of each testcase contains a single integer m ( 1 ≤ m ≤ 2 ⋅ 1 0 5 ) m (1≤m≤2⋅10^5) m(1m2105) — the number of columns in the wall.

The i-th of the next two lines contains a string ci, consisting of m characters, where each character is either ‘B’ or ‘W’. ci,j is ‘B’, if the c e l l ( i , j ) cell (i,j) cell(i,j) should be colored black, and ‘W’, if the c e l l ( i , j ) cell (i,j) cell(i,j) should be left white.

Additionally, for each j, the following constraint is satisfied: c1,j, c2,j or both of them are equal to ‘B’.

The sum of m over all testcases doesn’t exceed 2 ⋅ 1 0 5 2⋅10^5 2105.

Output

For each testcase, print "YES"if Monocarp can paint a wall. Otherwise, print "NO".

inputCopy

6
3
WBB
BBW
1
B
B
5
BWBWB
BBBBB
2
BW
WB
5
BBBBW
BWBBB
6
BWBBWB
BBBBBB

outputCopy

YES
YES
NO
NO
NO
YES

大致题意:
每次给你一个 2行 m列 的字符数组s。 s [ i ] [ j ] = = ′ B ′ s[i][j] == 'B' s[i][j]==B 代表这一块是黑色, s [ i ] [ j ] = = ′ W ′ s[i][j] == 'W' s[i][j]==W 代表这一块是白色。

问是否存在一条路径包括了所有的黑色块,每个黑色块只在这条路径上出现一次。存在就打印 YES,否则打印NO

这个例子存在这样的一条路径,所以打印 YES:

在这里插入图片描述

以下这个例子就不存在,所以打印NO

在这里插入图片描述

我们定义 f ( i , j ) ( 1 < = i < = 2 , 1 < = j < = n ) f(i,j) (1<=i<=2,1<=j<=n) f(i,j)(1<=i<=2,1<=j<=n) 为到达点 ( i , j ) (i,j) (i,j)的路径中包含的黑色块的数量。

最后我们只需要判断 m a x ( f ( 1 , n ) , f ( 2 , n ) ) = = 总的黑色块数量 max(f(1,n),f(2,n)) == 总的黑色块数量 max(f(1,n),f(2,n))==总的黑色块数量,如果等于说明确实存在这样一条路径;否则不存在。

分情况讨论:

s [ 1 ] [ j ] = = ′ B ′ s[1][j] == 'B' s[1][j]==B 时,有以下三种情况:

在这里插入图片描述

  • f [ 1 ] [ j − 1 ] = = ′ B ′ a n d f [ 2 ] [ j − 1 ] = = ′ B ′ f[1][j-1]=='B' and f[2][j-1] == 'B' f[1][j1]==Bandf[2][j1]==B时, f [ 1 ] [ j ] = f [ 1 ] [ j − 1 ] + 1 f[1][j] = f[1][j-1]+1 f[1][j]=f[1][j1]+1
  • f [ 1 ] [ j − 1 ] = = ′ B ′ f[1][j-1]=='B' f[1][j1]==B时, f [ 1 ] [ j ] = f [ 1 ] [ j − 1 ] + 1 f[1][j] = f[1][j-1]+1 f[1][j]=f[1][j1]+1
  • f [ 2 ] [ j − 1 ] = = ′ B ′ f[2][j-1]=='B' f[2][j1]==B时,这种情况不符合要求,忽略。

s [ 2 ] [ j ] = = ′ B ′ s[2][j] == 'B' s[2][j]==B 时,有以下三种情况:

在这里插入图片描述

  • f [ 1 ] [ j − 1 ] = = ′ B ′ a n d f [ 2 ] [ j − 1 ] = = ′ B ′ f[1][j-1]=='B' and f[2][j-1] == 'B' f[1][j1]==Bandf[2][j1]==B时, f [ 2 ] [ j ] = f [ 2 ] [ j − 1 ] + 1 f[2][j] = f[2][j-1]+1 f[2][j]=f[2][j1]+1
  • f [ 1 ] [ j − 1 ] = = ′ B ′ f[1][j-1]=='B' f[1][j1]==B时,这种情况不符合要求,忽略。
  • f [ 2 ] [ j − 1 ] = = ′ B ′ f[2][j-1]=='B' f[2][j1]==B时, f [ 2 ] [ j ] = f [ 2 ] [ j − 1 ] + 1 f[2][j] = f[2][j-1]+1 f[2][j]=f[2][j1]+1

f [ 1 ] [ j − 1 ] = = ′ B ′ a n d f [ 2 ] [ j − 1 ] = = ′ B ′ f[1][j-1]=='B' and f[2][j-1] == 'B' f[1][j1]==Bandf[2][j1]==B时,有以下四种情况:

在这里插入图片描述

  • f [ 1 ] [ j − 1 ] = = ′ B ′ a n d f [ 2 ] [ j − 1 ] = = ′ B ′ f[1][j-1]=='B' and f[2][j-1] == 'B' f[1][j1]==Bandf[2][j1]==B时,
    • f [ 1 ] [ j ] = m a x ( f [ 1 ] [ j − 1 ] + 1 , f [ 2 ] [ j − 1 ] + 2 ) f[1][j] = max(f[1][j-1] + 1,f[2][j-1] + 2) f[1][j]=max(f[1][j1]+1,f[2][j1]+2)
    • f [ 2 ] [ j ] = m a x ( f [ 1 ] [ j − 1 ] + 2 , f [ 2 ] [ j − 1 ] + 1 ) f[2][j] = max(f[1][j-1] + 2,f[2][j-1] + 1) f[2][j]=max(f[1][j1]+2,f[2][j1]+1)
  • f [ 1 ] [ j − 1 ] = = ′ B ′ f[1][j-1]=='B' f[1][j1]==B时,
    • f [ 1 ] [ j ] = f [ 1 ] [ j − 1 ] + 1 f[1][j] = f[1][j-1] + 1 f[1][j]=f[1][j1]+1
    • f [ 2 ] [ j ] = f [ 1 ] [ j − 1 ] + 2 f[2][j] = f[1][j-1] + 2 f[2][j]=f[1][j1]+2
  • f [ 2 ] [ j − 1 ] = = ′ B ′ f[2][j-1]=='B' f[2][j1]==B时,
    • f [ 1 ] [ j ] = f [ 2 ] [ j − 1 ] + 2 f[1][j] = f[2][j-1] + 2 f[1][j]=f[2][j1]+2
    • f [ 2 ] [ j ] = f [ 2 ] [ j − 1 ] + 1 f[2][j] = f[2][j-1] + 1 f[2][j]=f[2][j1]+1

时间复杂度: O ( n ) O(n) O(n)

代码:

#include <iostream>
#include<algorithm>
#include<vector>
#include<cstring>


using namespace std;

const int N = 2e5+10;
char s[3][N];
int f[3][N];

void solve(){
    int n;
    scanf("%d",&n);
    for(int i = 1;i <= 2;i++){
        scanf("%s",s[i] + 1);
    }
    
    memset(f,0,sizeof f);
    
    int cnt = 0;
    for(int i = 1;i <= 2;i++){
        for(int j = 1;j <= n;j++){
            if(s[i][j] == 'B') cnt++;
        }
    }

    if(s[1][1] == 'B'&& s[2][1] == 'B'){
        f[1][1] = 1;
        f[2][1] = 1;
    }
    
    for(int j = 2;j <= n;j++){
        if(s[1][j] == 'B' && s[2][j] == 'B'){
            if(s[1][j-1] == 'B' && s[2][j-1] == 'B'){
                f[1][j] = max(f[1][j-1] + 1,f[2][j-1] + 2);
                f[2][j] = max(f[1][j-1] + 2,f[2][j-1] + 1);
            }
            else if(s[1][j-1] == 'B'){
                f[1][j] = f[1][j-1] + 1;
                f[2][j] = f[1][j-1] + 2;
            }
            else if(s[2][j-1] == 'B'){
                f[1][j] = f[2][j-1] + 2;
                f[2][j] = f[2][j-1] + 1;
            }
        }
        else if(s[1][j] == 'B'){
            if(s[1][j-1] == 'B' && s[2][j-1] == 'B') f[1][j] = f[1][j-1]+1;
            else if(s[1][j-1] == 'B') f[1][j] = f[1][j-1] + 1;
        }
        else if(s[2][j] == 'B'){
            if(s[1][j-1] == 'B' && s[2][j-1] == 'B') f[2][j] = f[2][j-1]+1;
            else if(s[2][j-1] == 'B') f[2][j] = f[2][j-1] + 1;
        }
    }

    
    int ans = max(f[1][n],f[2][n]);
    //ans 相当于是连接 这个cnt个黑色块的边数 所以要+1 才是黑色块的数量
    if(cnt == ans+1) puts("YES");
    
    else puts("NO");
}

int main() {
  int t;
  cin>>t;
  while(t--){
      solve();
  }
  return 0;
} 
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 7-1哈密顿回路是指一条经过图中所有顶点恰好一次的回路。在图论中,哈密顿回路是一个经典问题,其求解难度较大。对于一些特殊的图,如完全图和正则图,哈密顿回路的存在性已经得到了证明。但对于一般的图,目前还没有有效的算法可以在多项式时间内求解。 ### 回答2: 7-1 Hamiltonian cycle是指一个无向图中,经过每个点恰好一次的简单路径,称之为Hamiltonian cycle。如果一个无向图有Hamiltonian cycle,那么它就是一个Hamiltonian图。 Hamiltonian cycle问题是研究如何确定一个无向图中是否存在Hamiltonian cycle的问题,寻找这个问题的答案是计算机科学领域的一个重要课题。 目前,还没有发现一个可以解决所有情况的通用算法,这导致了这个问题的很多变种研究,例如,求解Hamiltonian路径和Hamiltonian环的问题,寻找最长、最短的Hamiltonian路径等等。此外,这个问题也引起了很多数学家的研究兴趣,他们试图证明这个问题的正确性。 虽然寻找一个图的Hamiltonian cycle问题是一个非常困难的问题,但已经被证明,当满足一定条件时,这个问题是可以在多项式时间内解决的。这个问题的关键在于如何确定判断是否存在Hamiltonian cycle的特征。 在实际应用中,Hamiltonian cycle问题与路线和规划问题有很大关联。例如,对于一些必须经过所有节点的计算机网络或路线规划问题,Hamiltonian cycle问题可以有效地应用于设计最优的路线方案。 总之,7-1 Hamiltonian cycle问题是一个非常重要的计算机科学问题,虽然该问题没有通用的解决方案,但已经有很多专家致力于解决这个问题,相信在未来,我们会找到更有效、更高效的算法来解决这个问题。 ### 回答3: 哈密顿回路是指一条经过图中每个顶点并且仅经过一次的闭合路径,其名称来源于爱尔兰数学家和物理学家威廉·哈密顿。这个概念是 NP 难问题之一,因此在复杂性理论的研究中受到广泛的关注。 在数学上,我们可以用一个图论的视角来理解哈密顿回路的概念。一个图是由一组顶点和它们之间的边构成的数学对象。如果一个图中存在一条经过所有顶点的路径,则称该图具有哈密顿路径。如果这条路径是闭合的,也就是说路径的最后一个顶点与第一个顶点相连,则称该图具有哈密顿回路。哈密顿回路是所有哈密顿路径的一类特殊情形,因为它可以被看作是一个哈密顿路径的起点和终点相同的特殊图。 从实际应用的角度来看,哈密顿回路的限制条件使其具有很高的计算复杂度。因为必须遍历到每个顶点,而且顶点只能经过一次,因此尝试找到一个图的哈密顿回路相当困难。实际上,对于一些有着特定的性质的图,哈密顿回路的存在问题可以使用一些算法解决。然而,对于大多数图而言,哈密顿回路的问题依然是难以解决的 NP 难问题。这种限制性质使得哈密顿回路成为了复杂性理论的重要研究领域之一。 总之,哈密顿回路是图论中的一个经典深度问题,其限制性质使得在实际应用中非常困难。然而,在理论研究中,在寻找哈密顿回路问题上的努力有助于对计算复杂度的理解和解决 NP 难问题提供新的视角和新的方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值