Python学习之Pylnstaller库的使用以及科赫雪花小包裹(十一)

PyInstaller是一个用于将Python程序转换为独立可执行文件的库,适用于Windows、Linux和MacOSX。文章详细介绍了PyInstaller的安装、使用方法以及通过递归绘制科赫曲线和雪花的示例代码。递归思想在绘制分形几何中起到关键作用,可以修改绘制条件以创建不同阶数和形状的分形图形。
摘要由CSDN通过智能技术生成

Pylnstaller库的使用

Pylnstaller库的基本介绍

Pylnstaller库的安装

PyInstaller库是第三方库

官方网站:http://www.pyinstaller.org
第三方库:使用前需要额外安装

  • 安装第三方库需要使用pip工具及在cmd命令行中输入
python.exe -m pip install --upgrade pip

Pylnstaller库的作用

将扩展名为.py的Python源代码转换成无需源代码的可执行文件

它可以实现将扩展名为.py的任何Python源代码转换成Windows、Linux、Mac OS X下面的可执行文件

在这里插入图片描述

Pylnstaller库的使用说明

Pylnstaller库的简单使用

  • Pylnstaller库的简单使用及在cmd命令行中输入
pyinstaller -F <文件名.py>

在这里插入图片描述

Pylnstaller库的常用参数

在这里插入图片描述

示例

C:\WINDOWS\system32>d:
D:\>cd 专业学习包\Python学习包
D:\专业学习包\Python学习包>pyinstaller -F KochDrawV1.py
D:\专业学习包\Python学习包>pyinstaller -i curve.ico -F KochDrawV1.py

注意事项:更改cmd的目录、ico必须通过转换器转化

科赫雪花小包裹

"科赫雪花小包裹"问题分析

  • 递归思想:函数+分支
  • 递归链条:线段的组合
  • 递归基例:初识线段
    在这里插入图片描述
    在这里插入图片描述

"科赫雪花小包裹"示例

科赫曲线的绘制

#KochDrawV1.py
import turtle
def koch(size, n):
      if n == 0:
         turtle.fd(size)
      else:
         for angle in [0, 60, -120, 60]:
               turtle.left(angle)
               koch(size/3, n-1)
def main():
      turtle.setup(800,400)
      turtle.penup()
      turtle.goto(-300, -50)
      turtle.pendown()
      turtle.pensize(2)
      koch(600, 3)  # 三阶科赫曲线,阶数
      turtle.hideturtle()
main()

科赫雪花的绘制

#KochDrawV1.py
import turtle
def koch(size, n):
      if n == 0:
         turtle.fd(size)
      else:
             for angle in [0, 60, -120, 60]:
                   turtle.left(angle)
                   koch(size/3, n-1)
def main():
       turtle.setup(600,600)
       turtle.penup()
       turtle.goto(-200, 100)
       turtle.pendown()
       turtle.pensize(2)
       level = 3 # 三阶科赫雪花,阶数
       koch(400, level)
       turtle.right(120)
       koch(400, level)
       turtle.right(120)
       koch(400, level)
       turtle.hideturtle()
main()

"科赫雪花小包裹"举一反三

绘制条件的扩展

  • 修改分形几何绘制阶数
  • 修改科赫曲线的基本定义及旋转角度
  • 修改绘制科赫雪花的基础框架图形

比如:改成五阶、旋转角度为90°

分形几何干干万

  • 康托尔集、谢尔宾斯基三角形、门格海绵…
  • 龙形曲线、空间填充曲线、科赫曲线…
  • 函数递归的深入应用…
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值