第1关:条件概率
任务描述
本关任务:根据本节课所学知识完成本关所设置的选择题。
第2关:贝叶斯公式
任务描述
本关任务:根据本节课所学知识完成本关所设置的选择题。
第3关:朴素贝叶斯分类算法流程
任务描述
本关任务:填写python代码,完成fit与predict函数,分别实现模型的训练与预测。
import numpy as np
class NaiveBayesClassifier(object):
def __init__(self):
'''
self.label_prob表示每种类别在数据中出现的概率
例如,{0:0.333, 1:0.667}表示数据中类别0出现的概率为0.333,类别1的概率为0.667
'''
self.label_prob = {}
'''
self.condition_prob表示每种类别确定的条件下各个特征出现的概率
例如训练数据集中的特征为 [[2, 1, 1],
[1, 2, 2],
[2, 2, 2],
[2, 1, 2],
[1, 2, 3]]
标签为[1, 0, 1, 0, 1]
那么当标签为0时第0列的值为1的概率为0.5,值为2的概率为0.5;
当标签为0时第1列的值为1的概率为0.5,值为2的概率为0.5;
当标签为0时第2列的值为1的概率为0,值为2的概率为1,值为3的概率为0;
当标签为1时第0列的值为1的概率为0.333,值为2的概率为0.666;
当标签为1时第1列的值为1的概率为0.333,值为2的概率为0.666;
当标签为1时第2列的值为1的概率为0.333,值为2的概率为0.333,值为3的概率为0.333;
因此self.label_prob的值如下:
{
0:{
0:{
1:0.5
2:0.5
}
1:{
1:0.5
2:0.5
}
2:{
1:0
2:1
3:0
}
}
1:
{
0:{
1:0.333
2:0.666
}
1:{
1:0.333
2:0.666
}
2:{
1:0.333
2:0.333
3:0.333
}
}
}
'''
self.condition_prob = {}
def fit(self, feature, label):
'''
对模型进行训练,需要将各种概率分别保存在self.label_prob和self.condition_prob中
:param feature: 训练数据集所有特征组成的ndarray
:param label:训练数据集中所有标签组成的ndarray
:return: 无返回
'''
#********* Begin *********#
row_num = len(feature)
col_num = len(feature[0])
for c in label:
if c in self.label_prob:
self.label_prob[c] += 1
else:
self.label_prob[c] = 1
for key in self.label_prob.keys():
# 计算每种类别在数据集中出现的概率
self.label_prob[key] /= row_num
# 构建self.condition_prob中的key
self.condition_prob[key] = {}
for i in range(col_num):
self.condition_prob[key][i] = {}
for k in np.unique(feature[:, i], axis=0):
self.condition_prob[key][i][k] = 0
for i in range(len(feature)):
for j in range(len(feature[i])):
if feature[i][j] in self.condition_prob[label[i]]:
self.condition_prob[label[i]][j][feature[i][j]] += 1
else:
self.condition_prob[label[i]][j][feature[i][j]] = 1
for label_key in self.condition_prob.keys():
for k in self.condition_prob[label_key].keys():
total = 0
for v in self.condition_prob[label_key][k].values():
total += v
for kk in self.condition_prob[label_key][k].keys():
#计算每种类别确定的条件下各个特征出现的概率
self.condition_prob[label_key][k][kk] /= total
#********* End *********#
def predict(self, feature):
'''
对数据进行预测,返回预测结果
:param feature:测试数据集所有特征组成的ndarray
:return:
'''
# ********* Begin *********#
result = []
#对每条测试数据都进行预测
for i, f in enumerate(feature):
#可能的类别的概率
prob = np.zeros(len(self.label_prob.keys()))
ii = 0
for label, label_prob in self.label_prob.items():
#计算概率
prob[ii] = label_prob
for j in range(len(feature[0])):
prob[ii] *= self.condition_prob[label][j][f[j]]
ii += 1
#取概率最大的类别作为结果
result.append(list(self.label_prob.keys())[np.argmax(prob)])
return np.array(result)
#********* End *********#
第4关:拉普拉斯平滑
任务描述
本关任务:填写python代码,完成fit函数,实现模型训练功能。(PS:fit函数中没有平滑处理的话是过不了关的哦)
import numpy as np
class NaiveBayesClassifier(object):
def __init__(self):
'''
self.label_prob表示每种类别在数据中出现的概率
例如,{0:0.333, 1:0.667}表示数据中类别0出现的概率为0.333,类别1的概率为0.667
'''
self.label_prob = {}
'''
self.condition_prob表示每种类别确定的条件下各个特征出现的概率
例如训练数据集中的特征为 [[2, 1, 1],
[1, 2, 2],
[2, 2, 2],
[2, 1, 2],
[1, 2, 3]]
标签为[1, 0, 1, 0, 1]
那么当标签为0时第0列的值为1的概率为0.5,值为2的概率为0.5;
当标签为0时第1列的值为1的概率为0.5,值为2的概率为0.5;
当标签为0时第2列的值为1的概率为0,值为2的概率为1,值为3的概率为0;
当标签为1时第0列的值为1的概率为0.333,值为2的概率为0.666;
当标签为1时第1列的值为1的概率为0.333,值为2的概率为0.666;
当标签为1时第2列的值为1的概率为0.333,值为2的概率为0.333,值为3的概率为0.333;
因此self.label_prob的值如下:
{
0:{
0:{
1:0.5
2:0.5
}
1:{
1:0.5
2:0.5
}
2:{
1:0
2:1
3:0
}
}
1:
{
0:{
1:0.333
2:0.666
}
1:{
1:0.333
2:0.666
}
2:{
1:0.333
2:0.333
3:0.333
}
}
}
'''
self.condition_prob = {}
def fit(self, feature, label):
'''
对模型进行训练,需要将各种概率分别保存在self.label_prob和self.condition_prob中
:param feature: 训练数据集所有特征组成的ndarray
:param label:训练数据集中所有标签组成的ndarray
:return: 无返回
'''
#********* Begin *********#
row_num = len(feature)
col_num = len(feature[0])
unique_label_count = len(set(label))
for c in label:
if c in self.label_prob:
self.label_prob[c] += 1
else:
self.label_prob[c] = 1
for key in self.label_prob.keys():
# 计算每种类别在数据集中出现的概率,拉普拉斯平滑
self.label_prob[key] += 1
self.label_prob[key] /= (unique_label_count+row_num)
# 构建self.condition_prob中的key
self.condition_prob[key] = {}
for i in range(col_num):
self.condition_prob[key][i] = {}
for k in np.unique(feature[:, i], axis=0):
self.condition_prob[key][i][k] = 1
for i in range(len(feature)):
for j in range(len(feature[i])):
if feature[i][j] in self.condition_prob[label[i]]:
self.condition_prob[label[i]][j][feature[i][j]] += 1
for label_key in self.condition_prob.keys():
for k in self.condition_prob[label_key].keys():
#拉普拉斯平滑
total = len(self.condition_prob[label_key].keys())
for v in self.condition_prob[label_key][k].values():
total += v
for kk in self.condition_prob[label_key][k].keys():
# 计算每种类别确定的条件下各个特征出现的概率
self.condition_prob[label_key][k][kk] /= total
#********* End *********#
def predict(self, feature):
'''
对数据进行预测,返回预测结果
:param feature:测试数据集所有特征组成的ndarray
:return:
'''
result = []
# 对每条测试数据都进行预测
for i, f in enumerate(feature):
# 可能的类别的概率
prob = np.zeros(len(self.label_prob.keys()))
ii = 0
for label, label_prob in self.label_prob.items():
# 计算概率
prob[ii] = label_prob
for j in range(len(feature[0])):
prob[ii] *= self.condition_prob[label][j][f[j]]
ii += 1
# 取概率最大的类别作为结果
result.append(list(self.label_prob.keys())[np.argmax(prob)])
return np.array(result)
第5关:新闻文本主题分类
任务描述
本关任务:使用sklearn完成新闻文本主题分类任务。
from sklearn.feature_extraction.text import CountVectorizer # 从sklearn.feature_extraction.text里导入文本特征向量化模块
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfTransformer
def news_predict(train_sample, train_label, test_sample):
'''
训练模型并进行预测,返回预测结果
:param train_sample:原始训练集中的新闻文本,类型为ndarray
:param train_label:训练集中新闻文本对应的主题标签,类型为ndarray
:test_sample:原始测试集中的新闻文本,类型为ndarray
'''
# ********* Begin *********#
vec = CountVectorizer()
train_sample = vec.fit_transform(train_sample)
test_sample = vec.transform(test_sample)
tfidf = TfidfTransformer()
train_sample = tfidf.fit_transform(train_sample)
test_sample = tfidf.transform(test_sample)
mnb = MultinomialNB(alpha=0.01) # 使用默认配置初始化朴素贝叶斯
mnb.fit(train_sample, train_label) # 利用训练数据对模型参数进行估计
predict = mnb.predict(test_sample) # 对参数进行预测
return predict
# ********* End *********#