机器学习实验--- 朴素贝叶斯分类器

第1关:条件概率

任务描述

本关任务:根据本节课所学知识完成本关所设置的选择题。
在这里插入图片描述

第2关:贝叶斯公式

任务描述

本关任务:根据本节课所学知识完成本关所设置的选择题。
在这里插入图片描述

第3关:朴素贝叶斯分类算法流程

任务描述

本关任务:填写python代码,完成fit与predict函数,分别实现模型的训练与预测。

import numpy as np


class NaiveBayesClassifier(object):
    def __init__(self):
        '''
        self.label_prob表示每种类别在数据中出现的概率
        例如,{0:0.333, 1:0.667}表示数据中类别0出现的概率为0.333,类别1的概率为0.667
        '''
        self.label_prob = {}
        '''
        self.condition_prob表示每种类别确定的条件下各个特征出现的概率
        例如训练数据集中的特征为 [[2, 1, 1],
                              [1, 2, 2],
                              [2, 2, 2],
                              [2, 1, 2],
                              [1, 2, 3]]
        标签为[1, 0, 1, 0, 1]
        那么当标签为0时第0列的值为1的概率为0.5,值为2的概率为0.5;
        当标签为0时第1列的值为1的概率为0.5,值为2的概率为0.5;
        当标签为0时第2列的值为1的概率为0,值为2的概率为1,值为3的概率为0;
        当标签为1时第0列的值为1的概率为0.333,值为2的概率为0.666;
        当标签为1时第1列的值为1的概率为0.333,值为2的概率为0.666;
        当标签为1时第2列的值为1的概率为0.333,值为2的概率为0.333,值为3的概率为0.333;
        因此self.label_prob的值如下:     
        {
            0:{
                0:{
                    1:0.5
                    2:0.5
                }
                1:{
                    1:0.5
                    2:0.5
                }
                2:{
                    1:0
                    2:1
                    3:0
                }
            }
            1:
            {
                0:{
                    1:0.333
                    2:0.666
                }
                1:{
                    1:0.333
                    2:0.666
                }
                2:{
                    1:0.333
                    2:0.333
                    3:0.333
                }
            }
        }
        '''
        self.condition_prob = {}
    def fit(self, feature, label):
        '''
        对模型进行训练,需要将各种概率分别保存在self.label_prob和self.condition_prob中
        :param feature: 训练数据集所有特征组成的ndarray
        :param label:训练数据集中所有标签组成的ndarray
        :return: 无返回
        '''


        #********* Begin *********#
        row_num = len(feature)
        col_num = len(feature[0])
        for c in label:
            if c in self.label_prob:
                self.label_prob[c] += 1
            else:
                self.label_prob[c] = 1

        for key in self.label_prob.keys():
            # 计算每种类别在数据集中出现的概率
            self.label_prob[key] /= row_num
            # 构建self.condition_prob中的key
            self.condition_prob[key] = {}
            for i in range(col_num):
                self.condition_prob[key][i] = {}
                for k in np.unique(feature[:, i], axis=0):
                    self.condition_prob[key][i][k] = 0

        for i in range(len(feature)):
            for j in range(len(feature[i])):
                if feature[i][j] in self.condition_prob[label[i]]:
                    self.condition_prob[label[i]][j][feature[i][j]] += 1
                else:
                    self.condition_prob[label[i]][j][feature[i][j]] = 1

        for label_key in self.condition_prob.keys():
            for k in self.condition_prob[label_key].keys():
                total = 0
                for v in self.condition_prob[label_key][k].values():
                    total += v
                for kk in self.condition_prob[label_key][k].keys():
                    #计算每种类别确定的条件下各个特征出现的概率
                    self.condition_prob[label_key][k][kk] /= total
        #********* End *********#


    def predict(self, feature):
        '''
        对数据进行预测,返回预测结果
        :param feature:测试数据集所有特征组成的ndarray
        :return:
        '''
        # ********* Begin *********#
        result = []
        #对每条测试数据都进行预测
        for i, f in enumerate(feature):
            #可能的类别的概率
            prob = np.zeros(len(self.label_prob.keys()))
            ii = 0
            for label, label_prob in self.label_prob.items():
                #计算概率
                prob[ii] = label_prob
                for j in range(len(feature[0])):
                    prob[ii] *= self.condition_prob[label][j][f[j]]
                ii += 1
            #取概率最大的类别作为结果
            result.append(list(self.label_prob.keys())[np.argmax(prob)])
        return np.array(result)
        #********* End *********#




第4关:拉普拉斯平滑

任务描述

本关任务:填写python代码,完成fit函数,实现模型训练功能。(PS:fit函数中没有平滑处理的话是过不了关的哦)


import numpy as np

class NaiveBayesClassifier(object):
    def __init__(self):
        '''
        self.label_prob表示每种类别在数据中出现的概率
        例如,{0:0.333, 1:0.667}表示数据中类别0出现的概率为0.333,类别1的概率为0.667
        '''
        self.label_prob = {}
        '''
        self.condition_prob表示每种类别确定的条件下各个特征出现的概率
        例如训练数据集中的特征为 [[2, 1, 1],
                              [1, 2, 2],
                              [2, 2, 2],
                              [2, 1, 2],
                              [1, 2, 3]]
        标签为[1, 0, 1, 0, 1]
        那么当标签为0时第0列的值为1的概率为0.5,值为2的概率为0.5;
        当标签为0时第1列的值为1的概率为0.5,值为2的概率为0.5;
        当标签为0时第2列的值为1的概率为0,值为2的概率为1,值为3的概率为0;
        当标签为1时第0列的值为1的概率为0.333,值为2的概率为0.666;
        当标签为1时第1列的值为1的概率为0.333,值为2的概率为0.666;
        当标签为1时第2列的值为1的概率为0.333,值为2的概率为0.333,值为3的概率为0.333;
        因此self.label_prob的值如下:     
        {
            0:{
                0:{
                    1:0.5
                    2:0.5
                }
                1:{
                    1:0.5
                    2:0.5
                }
                2:{
                    1:0
                    2:1
                    3:0
                }
            }
            1:
            {
                0:{
                    1:0.333
                    2:0.666
                }
                1:{
                    1:0.333
                    2:0.666
                }
                2:{
                    1:0.333
                    2:0.333
                    3:0.333
                }
            }
        }
        '''
        self.condition_prob = {}

    def fit(self, feature, label):
        '''
        对模型进行训练,需要将各种概率分别保存在self.label_prob和self.condition_prob中
        :param feature: 训练数据集所有特征组成的ndarray
        :param label:训练数据集中所有标签组成的ndarray
        :return: 无返回
        '''

        #********* Begin *********#
        row_num = len(feature)
        col_num = len(feature[0])
        unique_label_count = len(set(label))

        for c in label:
            if c in self.label_prob:
                self.label_prob[c] += 1
            else:
                self.label_prob[c] = 1

        for key in self.label_prob.keys():
            # 计算每种类别在数据集中出现的概率,拉普拉斯平滑
            self.label_prob[key] += 1
            self.label_prob[key] /= (unique_label_count+row_num)

            # 构建self.condition_prob中的key
            self.condition_prob[key] = {}
            for i in range(col_num):
                self.condition_prob[key][i] = {}
                for k in np.unique(feature[:, i], axis=0):
                    self.condition_prob[key][i][k] = 1


        for i in range(len(feature)):
            for j in range(len(feature[i])):
                if feature[i][j] in self.condition_prob[label[i]]:
                    self.condition_prob[label[i]][j][feature[i][j]] += 1

        for label_key in self.condition_prob.keys():
            for k in self.condition_prob[label_key].keys():
                #拉普拉斯平滑
                total = len(self.condition_prob[label_key].keys())
                for v in self.condition_prob[label_key][k].values():
                    total += v
                for kk in self.condition_prob[label_key][k].keys():
                    # 计算每种类别确定的条件下各个特征出现的概率
                    self.condition_prob[label_key][k][kk] /= total
        #********* End *********#


    def predict(self, feature):
        '''
        对数据进行预测,返回预测结果
        :param feature:测试数据集所有特征组成的ndarray
        :return:
        '''

        result = []
        # 对每条测试数据都进行预测
        for i, f in enumerate(feature):
            # 可能的类别的概率
            prob = np.zeros(len(self.label_prob.keys()))
            ii = 0
            for label, label_prob in self.label_prob.items():
                # 计算概率
                prob[ii] = label_prob
                for j in range(len(feature[0])):
                    prob[ii] *= self.condition_prob[label][j][f[j]]
                ii += 1
            # 取概率最大的类别作为结果
            result.append(list(self.label_prob.keys())[np.argmax(prob)])
        return np.array(result)



第5关:新闻文本主题分类

任务描述

本关任务:使用sklearn完成新闻文本主题分类任务。

from sklearn.feature_extraction.text import CountVectorizer  # 从sklearn.feature_extraction.text里导入文本特征向量化模块
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfTransformer


def news_predict(train_sample, train_label, test_sample):
    '''
    训练模型并进行预测,返回预测结果
    :param train_sample:原始训练集中的新闻文本,类型为ndarray
    :param train_label:训练集中新闻文本对应的主题标签,类型为ndarray
    :test_sample:原始测试集中的新闻文本,类型为ndarray
    '''

    # ********* Begin *********#
    vec = CountVectorizer()
    train_sample = vec.fit_transform(train_sample)
    test_sample = vec.transform(test_sample)

    tfidf = TfidfTransformer()

    train_sample = tfidf.fit_transform(train_sample)
    test_sample = tfidf.transform(test_sample)

    mnb = MultinomialNB(alpha=0.01)  # 使用默认配置初始化朴素贝叶斯
    mnb.fit(train_sample, train_label)  # 利用训练数据对模型参数进行估计
    predict = mnb.predict(test_sample)  # 对参数进行预测
    return predict
    # ********* End *********#



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想做程序猿的员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值