OpenCV中的图像腐蚀和膨胀操作有哪些?

在OpenCV中,图像腐蚀(Erosion)和膨胀(Dilation)是常用的图像形态学操作。它们可以用于去除噪声、填充空洞、提取图像中的结构等。下面是几种常见的腐蚀和膨胀操作:

 腐蚀操作: 图像腐蚀可以通过函数cv2.erode()来实现。腐蚀操作会使图像中的物体边界收缩,并尽量保持物体的整体形状。

示例代码:

import cv2
import numpy as np

# 读取图像
image = cv2.imread('image.jpg')

# 定义腐蚀核大小
kernel_size = (5, 5)

# 进行腐蚀操作
eroded_image = cv2.erode(image, kernel_size, iterations=1)

# 显示腐蚀后的图像
cv2.imshow('Eroded Image', eroded_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
  1. 膨胀操作: 图像膨胀可以通过函数cv2.dilate()来实现。膨胀操作会使图像中的物体边界膨胀,并尽量保持物体的整体形状。

示例代码:

import cv2
import numpy as np

# 读取图像
image = cv2.imread('image.jpg')

# 定义膨胀核大小
kernel_size = (5, 5)

# 进行膨胀操作
dil
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值