在OpenCV中,图像腐蚀(Erosion)和膨胀(Dilation)是常用的图像形态学操作。它们可以用于去除噪声、填充空洞、提取图像中的结构等。下面是几种常见的腐蚀和膨胀操作:
腐蚀操作: 图像腐蚀可以通过函数cv2.erode()
来实现。腐蚀操作会使图像中的物体边界收缩,并尽量保持物体的整体形状。
示例代码:
import cv2
import numpy as np
# 读取图像
image = cv2.imread('image.jpg')
# 定义腐蚀核大小
kernel_size = (5, 5)
# 进行腐蚀操作
eroded_image = cv2.erode(image, kernel_size, iterations=1)
# 显示腐蚀后的图像
cv2.imshow('Eroded Image', eroded_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
- 膨胀操作: 图像膨胀可以通过函数
cv2.dilate()
来实现。膨胀操作会使图像中的物体边界膨胀,并尽量保持物体的整体形状。
示例代码:
import cv2
import numpy as np
# 读取图像
image = cv2.imread('image.jpg')
# 定义膨胀核大小
kernel_size = (5, 5)
# 进行膨胀操作
dil