wsl深度学习环境配置与pycharm连接

1.在微软应用商店下载ubuntu

按默认下载位置在c盘即可

安装完成后,创建用户名和密码。(注意,若报错 adduser: Please enter a username matching the regular expression configured。说明用户名格式不符合规范,比如用户名首字母不能是大写)

2.将wsl文件位置从c盘迁移至d盘

1.查看Ubuntu 版本号

wsl -l

2.在d盘新建一个文件,比如:D:\UbuntuWSL

3.一步一步执行如下命令,注意:据wsl-l的版本号自行修改版本号,我的是Ubuntu-22.04

wsl --export Ubuntu-22.04 d://UbuntuWSL//ubuntu-22.04.tar
wsl --unregister Ubuntu-22.04
wsl --import Ubuntu-22.04 d://UbuntuWSL d://UbuntuWSL//ubuntu-22.04.tar

4.成功迁移后,D:\UbuntuWSL内有如下文件:

3.配置cuda和cudnn

在终端选择Ubuntu

1.安装cudatoolkit

打开官网:CUDA Toolkit Archive | NVIDIA Developer

选择要安装的版本

一定要和自己电脑上驱动的版本适配!(可以在NVIDIA官网查看)

在wsl2的终端一步一步复制NVIDIA官方给的命令,如:

一定要确认每一步都没有error,我当时就出现了下载的文件在文件夹中名字变化的错误,若跟我出现一样的错误,请到修改下载的文件名称后在复制第四行指令

2.cuda环境变量配置

sudo nano ~/.bashrc

将以下内容添加进文件最后

export PATH=/usr/local/cuda-11.8/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

按Ctrl+x退出,提出是否更改的提示,输入y。

更新环境变量:

source ~/.bashrc

输入

nvcc -V

若能显示cuda版本,说明安装成功!

3.安装cudnn

在官网下载:cuDNN Archive | NVIDIA Developer

选择linux x86版本

将文件保存到windows环境,然后直接复制到wsl2 ubuntu的home目录下,和在windows环境中复制粘贴一样操作。

在wsl2终端进入home目录,输入以下命令解压:

sudo tar -xvf cudnn**    #省略部分按tab自动补全

然后把解压得到的文件分别拷贝到对应的文件夹(注意,下面命令中的 /lib/和/include/ 指的是刚刚解压得到的文件夹里的):

(若失败可以检查一下要复制到的目标文件夹是否存在,不存在可以手动新建)

 #以下是安装命令     
cd cudnn** #省略部分按tab自动补全
cd lib/
sudo cp -r /lib/* /usr/local/cuda-12.4(自己检查具体的版本修改路径)/lib64/
cd ..
cd include/
sudo cp -r /include/* /usr/local/cuda-12.4(自己检查具体的版本修改路径)/include/

#为更改读取权限:
sudo chmod a+r /usr/local/cuda-12.4(自己检查具体的版本修改路径)/include/cudnn*
sudo chmod a+r /usr/local/cuda-12.4(自己检查具体的版本修改路径)/lib64/libcudnn*

4.检查cudnn是否安装成功

cat /usr/local/cuda-11.8(根据自己的版本进行修改)include/cudnn_version.h | grep CUDNN_MAJOR -A 2

4.安装anaconda

在官网下载:Free Download | Anaconda

复制链接

在wsl2终端输入

wget https://www.anaconda.com/download#downloads #粘贴的链接

下载后执行

sh A** #省略部分按tab自动补全

创建conda虚拟环境:

 conda create --name ** python=3.10  #--name 后面是创建环境的名字,按自己的习惯命名,python=XX,输入自己想用的版本号
 conda activate ** #激活环境

5.配置pytorch

进入官网:Start Locally | PyTorch

选择版本下载,(注意:要先下载cuda然后才能选择GPU版本的Pytorch下载)

在wsl2终端复制command

5.Pycharm连接wsl,并使用conda生成的环境

注意(只有专业版pycharm才有此功能,若没有,可以去该网站下载Windows11 + WSL Ubuntu + Pycharm + Conda for deeplearning | 公孙启 (gongsunqi.xyz)

点击右下选择添加新的Interpreter,操作如下图所示:

点击下一步

选择‘现有’,然后配置类似以下目录(自己创建的环境名称可能会与我不同)

稍等片刻,就大功告成!

### 配置 PyCharm WSL 的集成 #### 启用并设置 WSL 为了使 PyCharm 能够连接WSL,需先确认已成功安装并启用了 Windows Subsystem for Linux。这通常涉及下载并安装所选的 Linux 发行版,例如 Ubuntu[^4]。 #### 安装 PyCharm 并创建项目 确保已经完成 PyCharm 的安装过程,并准备好一个新的或现有的 Python 项目。对于特定版本的需求,可以通过 Conda 来管理虚拟环境,比如创建名为 `qanything-python` 的 Python 3.10 环境: ```bash conda create -n qanything-python python=3.10 conda activate qanything-python ``` 接着克隆所需的 Git 仓库并将工作目录切换至其中: ```bash git clone -b qanything-python https://github.com/netease-youdao/QAnything.git cd QAnything pip install -e . ``` 以上命令用于初始化开发环境以及安装必要的包依赖关系。 #### 设置解释器路径 打开 PyCharm,在项目的设置中找到 "Project Interpreter" 选项卡。点击齿轮图标选择 “Add”,之后会弹出窗口允许添加新的解释器。此时应能看到一个专门针对 WSL 的选项;如果未自动显示,则手动浏览直至定位到 `/usr/bin/python3` 或其他合适的 Python 解释器位置于 WSL 文件系统内[^2]。 #### 测试配置有效性 当上述步骤完成后,尝试执行简单的测试脚本来验证配置是否正确无误。任何错误提示都可能指示还需要进一步调整网络共享或其他权限设定等问题[^1]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值