【c++】map和set&&AVL树&&红黑树详解&&模拟实现&&map和set封装

主页:醋溜马桶圈-CSDN博客

专栏:c++_醋溜马桶圈的博客-CSDN博客

gitee:mnxcc (mnxcc) - Gitee.com

 

目录

1. 关联式容器

2. 键值对

3. 树形结构的关联式容器

3.1 set

3.1.1 set的介绍

3.1.2 set的使用 

3.1.2.1 set的模板参数列表

3.1.2.2 set的构造

3.1.2.3 set的迭代器

3.1.2.4 set的容量

3.1.2.5 set修改操作

3.1.2.6 set的使用举例

3.2 map

3.2.1 map的介绍

3.2.2 map的使用

3.2.2.1 map的模板参数说明

3.2.2.3 map的迭代器

3.2.2.5 map中元素的修改

3.3 multiset

3.3.1 multiset的介绍

3.3.2 multiset的使用

3.4 multimap

3.4.1 multimap的介绍

3.4.2 multimap的使用

4. 底层结构

4.1 AVL 树

4.1.1 AVL树的概念

4.1.2 AVL树节点的定义

4.1.3 AVL树的插入

4.1.4 AVL树的旋转

4.1.4.1 右单旋

4.1.4.2 左单旋

4.1.4.3 先左单旋再右单旋

4.1.4.4 先右单旋再左单旋

4.1.5 AVL树的验证

4.1.5.1 验证其为二叉搜索树

4.1.5.2 验证其为平衡树

4.1.6 AVL树的删除(了解)

4.1.7 AVL树的性能

4.1.8 AVl树的模拟实现

4.2 红黑树

4.2.1 红黑树的概念

4.2.2 红黑树的性质

4.2.3 红黑树节点的定义

4.2.4 红黑树结构

4.2.5 红黑树的插入操作

4.2.5.1 按照二叉搜索的树规则插入新节点

4.2.5.2 检测新节点插入后,红黑树的性质是否造到破坏

4.2.5.2.1 情况一: cur为红,p为红,g为黑,u存在且为红

4.2.5.2.2 情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑

4.2.5.2.3 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑

4.2.6 红黑树的验证

4.2.7 红黑树的删除

4.2.8 红黑树与AVL树的比较

4.2.9 红黑树的应用

4.2.10 红黑树的模拟实现

4.3 红黑树模拟实现STL中的map与set 

4.3.1 红黑树的迭代器

4.3.1.1 begin()与end()

4.3.1.2 operator++()与operator--()

4.3.2 改造红黑树

4.3.3 map的模拟实现

4.3.4 set的模拟实现


1. 关联式容器

在初阶阶段,我们已经接触过STL中的部分容器,比如:vector、list、deque、forward_list(C++11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元素本身。那什么是关联式容器?它与序列式容器有什么区别?

关联式容器也是用来存储数据的,与序列式容器不同的是,其里面存储的是<key, value>结构的键值对,在数据检索时比序列式容器效率更高

2. 键值对

用来表示具有一一对应关系的一种结构,该结构中一般只包含两个成员变量key和value,key代表键值,value表示与key对应的信息。比如:现在要建立一个英汉互译的字典,那该字典中必然有英文单词与其对应的中文含义,而且,英文单词与其中文含义是一一对应的关系,即通过该应该单词,在词典中就可以找到与其对应的中文含义

SGI-STL中关于键值对的定义:

template <class T1, class T2>
struct pair
{
	typedef T1 first_type;
	typedef T2 second_type;
	T1 first;
	T2 second;
	pair() : first(T1()), second(T2())
	{}
	pair(const T1& a, const T2& b) : first(a), second(b)
	{}
};

3. 树形结构的关联式容器

根据应用场景的不桶,STL总共实现了两种不同结构的管理式容器:树型结构与哈希结构。树型结构的关联式容器主要有四种:map、set、multimap、multiset。这四种容器的共同点是:使用平衡搜索树(即红黑树)作为其底层结果,容器中的元素是一个有序的序列。下面一依次介绍每一个容器

3.1 set

3.1.1 set的介绍

cplusplus.com/reference/set/set/?kw=set

翻译:

  1. set是按照一定次序存储元素的容器
  2. 在set中,元素的value也标识它(value就是key,类型为T),并且每个value必须是唯一的。set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除
  3. 在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行排序
  4. set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对子集进行直接迭代
  5. set在底层是用二叉搜索树(红黑树)实现的

注意:

  1. 与map/multimap不同,map/multimap中存储的是真正的键值对<key, value>,set中只放value,但在底层实际存放的是由<value, value>构成的键值对
  2. set中插入元素时,只需要插入value即可,不需要构造键值对
  3. set中的元素不可以重复(因此可以使用set进行去重)
  4. 使用set的迭代器遍历set中的元素,可以得到有序序列
  5. set中的元素默认按照小于来比较
  6. set中查找某个元素,时间复杂度为:log_2 n
  7. set中的元素不允许修改
  8. set中的底层使用二叉搜索树(红黑树)来实现

3.1.2 set的使用 

3.1.2.1 set的模板参数列表

  • T: set中存放元素的类型,实际在底层存储<value, value>的键值对
  • Compare:set中元素默认按照小于来比较
  • Alloc:set中元素空间的管理方式,使用STL提供的空间配置器管理
3.1.2.2 set的构造

3.1.2.3 set的迭代器

3.1.2.4 set的容量

3.1.2.5 set修改操作

3.1.2.6 set的使用举例
#include<iostream>
#include<set>
using namespace std;
void TestSet()
{
	// 用数组array中的元素构造set
	int array[] = { 1, 3, 5, 7, 9, 2, 4, 6, 8, 0, 1, 3, 5, 7, 9, 2, 4,
6, 8, 0 };
	set<int> s(array, array + sizeof(array) / sizeof(array[0]));
	cout << s.size() << endl;
	// 正向打印set中的元素,从打印结果中可以看出:set可去重
	for (auto& e : s)
		cout << e << " ";
	cout << endl;
	// 使用迭代器逆向打印set中的元素
	for (auto it = s.rbegin(); it != s.rend(); ++it)
		cout << *it << " ";
	cout << endl;
	// set中值为3的元素出现了几次
	cout << s.count(3) << endl;
}
int main()
{
	TestSet();
	return 0;
}

3.2 map

3.2.1 map的介绍

cplusplus.com/reference/map/map/?kw=map

翻译:

  1. map是关联容器,它按照特定的次序(按照key来比较)存储由键值key和值value组合而成的元
  2. 在map中,键值key通常用于排序和惟一地标识元素,而值value中存储与此键值key关联的内容。键值key和值value的类型可能不同,并且在map的内部,key与value通过成员类型value_type绑定在一起,为其取别名称为pair:
    typedef pair<const key, T> value_type;
  3. 在内部,map中的元素总是按照键值key进行比较排序的
  4. map中通过键值访问单个元素的速度通常比unordered_map容器慢,但map允许根据顺序对元素进行直接迭代(即对map中的元素进行迭代时,可以得到一个有序的序列)
  5. map支持下标访问符,即在[]中放入key,就可以找到与key对应的value
  6. map通常被实现为二叉搜索树(更准确的说:平衡二叉搜索树(红黑树))

3.2.2 map的使用

3.2.2.1 map的模板参数说明

  • key: 键值对中key的类型
  • T: 键值对中value的类型
  • Compare: 比较器的类型,map中的元素是按照key来比较的,缺省情况下按照小于来比较,一般情况下(内置类型元素)该参数不需要传递,如果无法比较时(自定义类型),需要用户 自己显式传递比较规则(一般情况下按照函数指针或者仿函数来传递)
  • Alloc:通过空间配置器来申请底层空间,不需要用户传递,除非用户不想使用标准库提供的空间配置器
  • 注意:在使用map时,需要包含头文件
3.2.2.2 map的构造

3.2.2.3 map的迭代器

3.2.2.4 map的容量与元素访问

问题:当key不在map中时,通过operator获取对应value时会发生什么问题?

注意:在元素访问时,有一个与operator[]类似的操作at()(该函数不常用)函数,都是通过key找到与key对应的value然后返回其引用,不同的是:当key不存在时,operator[ ]用默认value与key构造键值对然后插入,返回该默认value,at()函数直接抛异常

3.2.2.5 map中元素的修改

#include<iostream>
#include <string>
#include <map>
using namespace std;
void TestMap()
{
	map<string, string> m;
	// 向map中插入元素的方式:
	// 将键值对<"peach","桃子">插入map中,用pair直接来构造键值对
	m.insert(pair<string, string>("peach", "桃子"));
	// 将键值对<"peach","桃子">插入map中,用make_pair函数来构造键值对
	m.insert(make_pair("banan", "香蕉"));

	// 借用operator[]向map中插入元素
	/*
	operator[]的原理是:
	 用<key, T()>构造一个键值对,然后调用insert()函数将该键值对插入到map中
	 如果key已经存在,插入失败,insert函数返回该key所在位置的迭代器
	 如果key不存在,插入成功,insert函数返回新插入元素所在位置的迭代器
	 operator[]函数最后将insert返回值键值对中的value返回
	*/
	// 将<"apple", "">插入map中,插入成功,返回value的引用,将“苹果”赋值给该引用结果
	m["apple"] = "苹果";
	// key不存在时抛异常
	 //m.at("waterme") = "水蜜桃";
	cout << m.size() << endl;
	// 用迭代器去遍历map中的元素,可以得到一个按照key排序的序列
	for (auto& e : m)
		cout << e.first << "--->" << e.second << endl;
	cout << endl;
	// map中的键值对key一定是唯一的,如果key存在将插入失败
	auto ret = m.insert(make_pair("peach", "桃色"));
	if (ret.second)
		cout << "<peach, 桃色>不在map中, 已经插入" << endl;
	else
		cout << "键值为peach的元素已经存在:" << ret.first->first << "--->"
		<< ret.first->second << " 插入失败" << endl;
	// 删除key为"apple"的元素
	m.erase("apple");
	if (1 == m.count("apple"))
		cout << "apple还在" << endl;
	else
		cout << "apple被吃了" << endl;
}
int main()
{
	TestMap();
	return 0;
}

【总结】

  1. map中的的元素是键值对
  2. map中的key是唯一的,并且不能修改
  3. 默认按照小于的方式对key进行比较
  4. map中的元素如果用迭代器去遍历,可以得到一个有序的序列
  5. map的底层为平衡搜索树(红黑树),查找效率比较高O(log_2 N)
  6. 支持[]操作符,operator[]中实际进行插入查找

3.3 multiset

3.3.1 multiset的介绍

cplusplus.com/reference/set/multiset/?kw=multiset

[翻译]:

  1. multiset是按照特定顺序存储元素的容器,其中元素是可以重复的
  2. 在multiset中,元素的value也会识别它(因为multiset中本身存储的就是<value, value>组成的键值对,因此value本身就是key,key就是value,类型为T). multiset元素的值不能在容器中进行修改(因为元素总是const的),但可以从容器中插入或删除
  3. 在内部,multiset中的元素总是按照其内部比较规则(类型比较)所指示的特定严格弱排序准则进行排序
  4. multiset容器通过key访问单个元素的速度通常比unordered_multiset容器慢,但当使用迭代器遍历时会得到一个有序序列
  5. multiset底层结构为二叉搜索树(红黑树)

注意:

  1. multiset中再底层中存储的是<value, value>的键值对
  2. mtltiset的插入接口中只需要插入即可
  3. 与set的区别是,multiset中的元素可以重复,set是中value是唯一的
  4. 使用迭代器对multiset中的元素进行遍历,可以得到有序的序列
  5. multiset中的元素不能修改
  6. 在multiset中找某个元素,时间复杂度为O(log_2 N)
  7. multiset的作用:可以对元素进行排序

3.3.2 multiset的使用

此处只简单演示set与multiset的不同,其他接口接口与set相同

#include <set>
#include<iostream>
using namespace std;
int main()
{
	int array[] = { 2, 1, 3, 9, 6, 0, 5, 8, 4, 7 };

	// 注意:multiset在底层实际存储的是<int, int>的键值对
	multiset<int> s(array, array + sizeof(array) / sizeof(array[0]));
	for (auto& e : s)
		cout << e << " ";
	cout << endl;
	return 0;
}

3.4 multimap

3.4.1 multimap的介绍

翻译:

  1. Multimaps是关联式容器,它按照特定的顺序,存储由key和value映射成的键值对<key,value>,其中多个键值对之间的key是可以重复的
  2. 在multimap中,通常按照key排序和惟一地标识元素,而映射的value存储与key关联的内容。key和value的类型可能不同,通过multimap内部的成员类型value_type组合在一起,
    value_type是组合key和value的键值对:
    typedef pair<const Key, T> value_type;
  3. 在内部,multimap中的元素总是通过其内部比较对象,按照指定的特定严格弱排序标准对key进行排序的
  4. multimap通过key访问单个元素的速度通常比unordered_multimap容器慢,但是使用迭代器直接遍历multimap中的元素可以得到关于key有序的序列
  5. multimap在底层用二叉搜索树(红黑树)来实现

注意:multimap和map的唯一不同就是:map中的key是唯一的,而multimap中key是可以

重复的

3.4.2 multimap的使用

multimap中的接口可以参考map,功能都是类似的

注意:

  1. multimap中的key是可以重复的
  2. multimap中的元素默认将key按照小于来比较
  3. multimap中没有重载operator[ ]操作
  4. 使用时与map包含的头文件相同

4. 底层结构

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现

4.1 AVL

4.1.1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树
如果它有n个结点,其高度可保持在
O(log_2 n),搜索时间复杂度O($log_2 n$)

4.1.2 AVL树节点的定义

AVL树节点的定义:

template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _bf(0)
	{}
	AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
	AVLTreeNode<T>* _pRight;  // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲
	T _data;
	int _bf;                  // 该节点的平衡因子
};

4.1.3 AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
bool Insert(const T& data)
{
	// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
	// ...

	// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,
	// 并检测是否破坏了AVL树的平衡性

	 /*
	 pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
	 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
	  1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
	  2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
	  
	 此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
	  1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
	成0,此时满足
	     AVL树的性质,插入成功
	  2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
	新成正负1,此
	     时以pParent为根的树的高度增加,需要继续向上更新
	  3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
	行旋转处理
	 */
		while (pParent)
		{
			// 更新双亲的平衡因子
			if (pCur == pParent->_pLeft)
				pParent->_bf--;
			else
				pParent->_bf++;
			// 更新后检测双亲的平衡因子
			if (0 == pParent->_bf)
			{
				break;
			}
			else if (1 == pParent->_bf || -1 == pParent->_bf)
			{
				// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树
				// 的高度增加了一层,因此需要继续向上调整
					pCur = pParent;
				pParent = pCur->_pParent;
			}
			else
			{
				// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
				// 为根的树进行旋转处理
				if (2 == pParent->_bf)
				{
					// ...
				}
				else
				{
					// ...
				}
			}
		}
	return true;
}

4.1.4 AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

4.1.4.1 右单旋

新节点插入较高左子树的左侧---左左:右单旋

void _RotateR(PNode pParent)
{
	// pSubL: pParent的左孩子
	// pSubLR: pParent左孩子的右孩子,注意:该
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;
	// 旋转完成之后,30的右孩子作为双亲的左孩子
	pParent->_pLeft = pSubLR;
	// 如果30的左孩子的右孩子存在,更新亲双亲
	if (pSubLR)
		pSubLR->_pParent = pParent;
	// 60 作为 30的右孩子
	pSubL->_pRight = pParent;

	// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
	PNode pPParent = pParent->_pParent;

	// 更新60的双亲
	pParent->_pParent = pSubL;

	// 更新30的双亲
	pSubL->_pParent = pPParent;
	// 如果60是根节点,根新指向根节点的指针
	if (NULL == pPParent)
	{
		_pRoot = pSubL;
		pSubL->_pParent = NULL;
	}
	else
	{
		// 如果60是子树,可能是其双亲的左子树,也可能是右子树
		if (pPParent->_pLeft == pParent)
			pPParent->_pLeft = pSubL;
		else
			pPParent->_pRight = pSubL;
	}
	// 根据调整后的结构更新部分节点的平衡因子
	pParent->_bf = pSubL->_bf = 0;
}
4.1.4.2 左单旋

新节点插入较高右子树的右侧---右右:左单旋

实现及情况考虑可参考右单旋

4.1.4.3 先左单旋再右单旋

新节点插入较高左子树的右侧---左右:先左单旋再右单旋

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent)
{
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;

	// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
		int bf = pSubLR->_bf;

	// 先对30进行左单旋
	_RotateL(pParent->_pLeft);

	// 再对90进行右单旋
	_RotateR(pParent);
	if (1 == bf)
		pSubL->_bf = -1;
	else if (-1 == bf)
		pParent->_bf = 1;
}
4.1.4.4 先右单旋再左单旋

新节点插入较高右子树的左侧---右左:先右单旋再左单旋

参考右左双旋

总结:

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR

  • 当pSubR的平衡因子为1时,执行左单旋
  • 当pSubR的平衡因子为-1时,执行右左双旋

2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL

  • 当pSubL的平衡因子为-1是,执行右单旋
  • 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

4.1.5 AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

4.1.5.1 验证其为二叉搜索树

如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

4.1.5.2 验证其为平衡树
  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{
	// 空树也是AVL树
	if (nullptr == pRoot) return true;

	// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
	int leftHeight = _Height(pRoot->_pLeft);
	int rightHeight = _Height(pRoot->_pRight);
	int diff = rightHeight - leftHeight;
	// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
    // pRoot平衡因子的绝对值超过1,则一定不是AVL树
	if (diff != pRoot->_bf || (diff > 1 || diff < -1))
		return false;
	// pRoot的左和右如果都是AVL树,则该树一定是AVL树
	return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot -> _pRight);
}

4.1.6 AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
具体实现可参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。

4.1.7 AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即$log_2 (N)$。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合

4.1.8 AVl树的模拟实现

AVLTree.h

#pragma once
#include<iostream>
#include<assert.h>
#include<vector>
using namespace std;

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	pair<K, V> _kv;
	int _bf;//平衡因子

	AVLTreeNode(const pair<K, V>& kv)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}
};

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;
		//...
		//更新平衡因子
		while (parent)
		{
			if (cur == parent->_left)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}
			if (parent->_bf == 0)
			{
				//更新结束
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				//继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{

				//当前子树出问题,旋转平衡
				if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}

				break;
			}
			else
			{
				assert(false);
			}
		}

		return true;
	}
	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}

		return nullptr;
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
	//右单旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;//左孩子
		Node* subLR = subL->_right;//左孩子的右孩子

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;

		Node* ppNode = parent->_parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}

		parent->_bf = subL->_bf = 0;
	}
	//左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		subR->_left = parent;
		Node* ppNode = parent->_parent;

		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_right == parent)
			{
				ppNode->_right = subR;
			}
			else
			{
				ppNode->_left = subR;
			}
			subR->_parent = ppNode;
		}

		parent->_bf = subR->_bf = 0;
	}
	//右左双旋
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == 1)
		{
			subRL->_bf = 0;
			subR->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			subRL->_bf = 0;
			subR->_bf = 1;
			parent->_bf = 0;
		}
		else if (bf == 0)
		{
			subRL->_bf = 0;
			subR->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
	//左右双旋
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		if (bf == -1)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 1)
		{
			subLR->_bf = 0;
			subL->_bf = -1;
			parent->_bf = 0;
		}
		else if (bf == 0)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
	//判断平衡
	bool IsBalance()
	{
		return _IsBalance(_root);
	}
	//高度
	int Height()
	{
		return _Height(_root);
	}
	//
	int Size()
	{
		return _Size(_root);
	}
private:
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	int _Size(Node* root)
	{
		return root == nullptr ? 0 : _Size(root->_left) + _Size(root->_right) + 1;
	}

	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;
		//int leftHeight = _Height(root->_left);
		//int rightHeight = _Height(root->_right);
		return max(_Height(root->_left), _Height(root->_right)) + 1;
	}

	bool _IsBalance(Node* root)
	{
		if (root == nullptr)
			return true;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		// 不平衡
		if (abs(leftHeight - rightHeight) >= 2)
		{
			cout << root->_kv.first << endl;
			return false;
		}

		// 顺便检查一下平衡因子是否正确
		if (rightHeight - leftHeight != root->_bf)
		{
			cout << root->_kv.first << endl;
			return false;
		}

		return _IsBalance(root->_left)
			&& _IsBalance(root->_right);
	}

private:
	Node* _root = nullptr;

};

4.2 红黑树

4.2.1 红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡

4.2.2 红黑树的性质

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的 
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

4.2.3 红黑树节点的定义

// 节点的颜色
enum Color { RED, BLACK };
// 红黑树节点的定义
template<class ValueType>
struct RBTreeNode
{
	RBTreeNode(const ValueType& data = ValueType(),Color color = RED)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _color(color)
	{}
	RBTreeNode<ValueType>* _pLeft;   // 节点的左孩子
	RBTreeNode<ValueType>* _pRight;  // 节点的右孩子
	RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)
	ValueType _data;// 节点的值域
	Color _color; // 节点的颜色
};

4.2.4 红黑树结构

为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:

4.2.5 红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

4.2.5.1 按照二叉搜索的树规则插入新节点
template<class ValueType>
class RBTree
{
	//……
	bool Insert(const ValueType& data)
	{
		PNode& pRoot = GetRoot();
		if (nullptr == pRoot)
		{
			pRoot = new Node(data, BLACK);
			// 根的双亲为头节点
			pRoot->_pParent = _pHead;
			_pHead->_pParent = pRoot;
		}
		else
		{
			// 1. 按照二叉搜索的树方式插入新节点
			// 2. 检测新节点插入后,红黑树的性质是否造到破坏,
			//   若满足直接退出,否则对红黑树进行旋转着色处理
		}
		// 根节点的颜色可能被修改,将其改回黑色
		pRoot->_color = BLACK;
		_pHead->_pLeft = LeftMost();
		_pHead->_pRight = RightMost();
		return true;
	}
private:
	PNode& GetRoot() { return _pHead->_pParent; }
	// 获取红黑树中最小节点,即最左侧节点
	PNode LeftMost();
	// 获取红黑树中最大节点,即最右侧节点
	PNode RightMost();
private:
	PNode _pHead;
};
4.2.5.2 检测新节点插入后,红黑树的性质是否造到破坏

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

4.2.5.2.1 情况一: cur为红,p为红,g为黑,u存在且为红

cur和p均为红,违反了性质三,此处能否将p直接改为黑?

解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

4.2.5.2.2 情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑
  • p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
  • p为g的右孩子,cur为p的右孩子,则进行左单旋转
  • p、g变色--p变黑,g变红
4.2.5.2.3 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑

  • p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,
  • p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
  • 则转换成了情况2

针对每种情况进行相应的处理即可

bool Insert(const ValueType& data)
{
	// ...
	// 新节点插入后,如果其双亲节点的颜色为空色,则违反性质3:不能有连在一起的红色结点
		while (pParent && RED == pParent->_color)
		{
			// 注意:grandFather一定存在        
			// 因为pParent存在,且不是黑色节点,则pParent一定不是根,则其一定有双亲
			PNode grandFather = pParent->_pParent;
			// 先讨论左侧情况
			if (pParent == grandFather->_pLeft)
			{
				PNode unclue = grandFather->_pRight;
				// 情况三:叔叔节点存在,且为红
				if (unclue && RED == unclue->_color)
				{
					pParent->_color = BLACK;
					unclue->_color = BLACK;
					grandFather->_color = RED;
					pCur = grandFather;
					pParent = pCur->_pParent;
				}
				else
				{
					// 情况五:叔叔节点不存在,或者叔叔节点存在且为黑
					if (pCur == pParent->_pRight)
					{
						_RotateLeft(pParent);
						swap(pParent, pCur);
					}
					// 情况五最后转化成情况四
					grandFather->_color = RED;
					pParent->_color = BLACK;
					_RotateRight(grandFather);
				}
			}
			else
			{
				// ...
			}
		}
	// ...
}

4.2.6 红黑树的验证

红黑树的检测分为两步:

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
  2. 检测其是否满足红黑树的性质
bool IsValidRBTree()
{
	PNode pRoot = GetRoot();
	// 空树也是红黑树
	if (nullptr == pRoot)
		return true;
	// 检测根节点是否满足情况
	if (BLACK != pRoot->_color)
	{
		cout << "违反红黑树性质二:根节点必须为黑色" << endl;
		return false;
	}
	// 获取任意一条路径中黑色节点的个数
	size_t blackCount = 0;
	PNode pCur = pRoot;
	while (pCur)
	{
		if (BLACK == pCur->_color)
			blackCount++;
		pCur = pCur->_pLeft;
	}
	// 检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数
	size_t k = 0;
	return _IsValidRBTree(pRoot, k, blackCount);
}
bool _IsValidRBTree(PNode pRoot, size_t k, const size_t blackCount)
{
	//走到null之后,判断k和black是否相等
	if (nullptr == pRoot)
	{
		if (k != blackCount)
		{
			cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;
			return false;
		}
		return true;
	}
	// 统计黑色节点的个数
	if (BLACK == pRoot->_color)
		k++;
	// 检测当前节点与其双亲是否都为红色
	PNode pParent = pRoot->_pParent;
	if (pParent && RED == pParent->_color && RED == pRoot->_color)
	{
		cout << "违反性质三:没有连在一起的红色节点" << endl;
		return false;
	}
	return _IsValidRBTree(pRoot->_pLeft, k, blackCount) &&
		_IsValidRBTree(pRoot->_pRight, k, blackCount);
}

4.2.7 红黑树的删除

红黑树的删除本节不做讲解,可参考:《算法导论》或者《STL源码剖析》

红黑树 - _Never_ - 博客园 (cnblogs.com)

4.2.8 红黑树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O($log_2 N$),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多

4.2.9 红黑树的应用

  1. C++ STL库 -- map/set、mutil_map/mutil_set
  2. Java 库
  3. linux内核
  4. 其他一些库

4.2.10 红黑树的模拟实现

RBTree.h

#pragma once
#include<vector>
using namespace std;

enum Colour
{
	RED,
	BLACK
};
template<class K,class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	pair<K, V> _kv;
	Colour _col;


	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};
template<class K, class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* parent = nullptr;//保存parent
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		cur->_col = RED; // 新增节点给红色
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		//parent存在且为红色,向上变色
		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				//如果uncle存在且为红色,变色即可
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					//继续向上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				//叔叔不存在或者存在且为黑
				else
				{
					if (cur == parent->_left)
					{
						//    g
						//  p   u
						//c
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//      g  
						//   p     u
						//      c 
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else
			{
				Node* uncle = grandfather->_left;
				// 叔叔存在且为红,变色即可
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				// 叔叔不存在,或者存在且为黑
				else
				{
					// 情况二:叔叔不存在或者存在且为黑
					// 旋转+变色
					//      g
					//   u     p
					//            c
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//		g
						//   u     p
						//      c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
		}
		_root->_col = BLACK;
		return true;
	}
	//右旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		subL->_right = parent;
		Node* ppNode = parent->_parent;
		parent->_parent = subL;
		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}
	}
	//左旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		
		subR->_left = parent;
		Node* ppNode = parent->_parent;
		parent->_parent = subR;
		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_right == parent)
			{
				ppNode->_right = subR;
			}
			else
			{
				ppNode->_left = subR;
			}

			subR->_parent = ppNode;
		}
	}
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
	bool IsBalance()
	{
		if (_root->_col == RED)
		{
			return false;
		}

		int refNum = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				++refNum;
			}

			cur = cur->_left;
		}

		return Check(_root, 0, refNum);
	}
private:
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}
	bool Check(Node* root, int blackNum, const int refNum)
	{
		if (root == nullptr)
		{
			//cout << blackNum << endl;
			if (refNum != blackNum)
			{
				cout << "存在黑色节点的数量不相等的路径" << endl;
				return false;
			}

			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << root->_kv.first << "存在连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			blackNum++;
		}

		return Check(root->_left, blackNum, refNum)
			&& Check(root->_right, blackNum, refNum);
	}

private:
	Node* _root = nullptr;
};

4.3 红黑树模拟实现STL中的mapset 

4.3.1 红黑树的迭代器

迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代器,需要考虑以前问题:

4.3.1.1 begin()与end()

STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后,可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪块?能否给成nullptr呢?答案是行不通的,因为对end()位置的迭代器进行--操作,必须要能找最后一个元素,此处就不行,因此最好的方式是将end()放在头结点的位置

4.3.1.2 operator++()与operator--()
// 找迭代器的下一个节点,下一个节点肯定比其大
void Increasement()
{
	//分两种情况讨论:_pNode的右子树存在和不存在
	// 右子树存在
	if (_pNode->_pRight)
	{
		// 右子树中最小的节点,即右子树中最左侧节点
		_pNode = _pNode->_pRight;
		while (_pNode->_pLeft)
			_pNode = _pNode->_pLeft;
	}
	else
	{
		// 右子树不存在,向上查找,直到_pNode != pParent->right
		PNode pParent = _pNode->_pParent;
		while (pParent->_pRight == _pNode)
		{
			_pNode = pParent;
			pParent = _pNode->_pParent;
		}
		// 特殊情况:根节点没有右子树
		if (_pNode->_pRight != pParent)
			_pNode = pParent;
	}
}
// 获取迭代器指向节点的前一个节点
void Decreasement()
{
	//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不
	存在
		// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置
		if (_pNode->_pParent->_pParent == _pNode && _pNode->_color == RED)
			_pNode = _pNode->_pRight;
		else if (_pNode->_pLeft)
		{
			// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点
			_pNode = _pNode->_pLeft;
			while (_pNode->_pRight)
				_pNode = _pNode->_pRight;
		}
		else
		{
			// _pNode的左子树不存在,只能向上找
			PNode pParent = _pNode->_pParent;
			while (_pNode == pParent->_pLeft)
			{
				_pNode = pParent;
				pParent = _pNode->_pParent;
			}
			_pNode = pParent;
		}
}

4.3.2 改造红黑树

RBTree.h

// 因为关联式容器中存储的是<key, value>的键值对,因此
// k为key的类型,
// ValueType: 如果是map,则为pair<K, V>; 如果是set,则为k
// KeyOfValue: 通过value来获取key的一个仿函数类
#pragma once
#include<vector>

enum Colour
{
	RED,
	BLACK
};

template<class T>
struct RBTreeNode
{
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;

	T _data;
	Colour _col;

	RBTreeNode(const T& data)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(data)
		, _col(RED)
	{}
};

template<class T, class Ref, class Ptr>
struct __RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef __RBTreeIterator<T, Ref, Ptr> Self;
	Node* _node;

	__RBTreeIterator(Node* node)
		:_node(node)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	bool operator!=(const Self& s)
	{
		return _node != s._node;
	}

	Self& operator++()
	{
		if (_node->_right)
		{
			// 下一个,右树最左节点
			Node* leftMin = _node->_right;
			while (leftMin->_left)
			{
				leftMin = leftMin->_left;
			}

			_node = leftMin;
		}
		else
		{
			// 下一个,孩子等于父亲左的那个祖先
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}
};

template<class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;

public:
	typedef __RBTreeIterator<T, T&, T*> Iterator;
	typedef __RBTreeIterator<T, const T&, const T*> ConstIterator;

	RBTree() = default;

	RBTree(const RBTree<K, T, KeyOfT>&t)
	{
		_root = Copy(t._root);
	}

	// t2 = t1
	RBTree<K, T, KeyOfT>& operator=(RBTree<K, T, KeyOfT> t)
	{
		swap(_root, t._root);
		return *this;
	}

	~RBTree()
	{
		Destroy(_root);

		_root = nullptr;
	}

	Iterator Begin()
	{
		Node* leftMin = _root;
		while (leftMin && leftMin->_left)
		{
			leftMin = leftMin->_left;
		}

		return Iterator(leftMin);
	}

	Iterator End()
	{
		return Iterator(nullptr);
	}

	ConstIterator End() const
	{
		return ConstIterator(nullptr);
	}

	ConstIterator Begin() const
	{
		Node* leftMin = _root;
		while (leftMin && leftMin->_left)
		{
			leftMin = leftMin->_left;
		}

		return ConstIterator(leftMin);
	}

	Iterator Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else
			{
				return Iterator(cur);
			}
		}

		return End();
	}

	pair<Iterator, bool> Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return make_pair(Iterator(_root), true);
		}

		KeyOfT kot;
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			// K
			// pair<K, V>
			// kot对象,是用来取T类型的data对象中的key
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(Iterator(cur), false);
			}
		}

		cur = new Node(data);
		Node* newnode = cur;
		cur->_col = RED; // 新增节点给红色
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		// parent的颜色是黑色也结束
		while (parent && parent->_col == RED)
		{
			// 关键看叔叔
			Node* grandfather = parent->_parent;
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				// 叔叔存在且为红,-》变色即可
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else // 叔叔不存在,或者存在且为黑
				{
					if (cur == parent->_left)
					{
						//     g  
						//   p   u
						// c 
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//      g  
						//   p     u
						//      c 
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
			else
			{
				Node* uncle = grandfather->_left;
				// 叔叔存在且为红,-》变色即可
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else // 叔叔不存在,或者存在且为黑
				{
					// 情况二:叔叔不存在或者存在且为黑
					// 旋转+变色
					//      g
					//   u     p
					//            c
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//		g
						//   u     p
						//      c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
		}

		_root->_col = BLACK;

		return make_pair(Iterator(newnode), true);
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;

		Node* ppNode = parent->_parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		subR->_left = parent;
		Node* ppNode = parent->_parent;

		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_right == parent)
			{
				ppNode->_right = subR;
			}
			else
			{
				ppNode->_left = subR;
			}
			subR->_parent = ppNode;
		}
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	bool IsBalance()
	{
		if (_root->_col == RED)
		{
			return false;
		}

		int refNum = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				++refNum;
			}

			cur = cur->_left;
		}

		return Check(_root, 0, refNum);
	}

private:
	Node* Copy(Node* root)
	{
		if (root == nullptr)
			return nullptr;

		Node* newroot = new Node(root->_data);
		newroot->_col = root->_col;

		newroot->_left = Copy(root->_left);
		if (newroot->_left)
			newroot->_left->_parent = newroot;

		newroot->_right = Copy(root->_right);
		if (newroot->_right)
			newroot->_right->_parent = newroot;

		return newroot;
	}

	void Destroy(Node* root)
	{
		if (root == nullptr)
			return;

		Destroy(root->_left);
		Destroy(root->_right);
		delete root;
		root = nullptr;
	}

	bool Check(Node* root, int blackNum, const int refNum)
	{
		if (root == nullptr)
		{
			//cout << blackNum << endl;
			if (refNum != blackNum)
			{
				cout << "存在黑色节点的数量不相等的路径" << endl;
				return false;
			}

			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << root->_kv.first << "存在连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			blackNum++;
		}

		return Check(root->_left, blackNum, refNum)
			&& Check(root->_right, blackNum, refNum);
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

private:
	Node* _root = nullptr;
	//size_t _size = 0;
};

4.3.3 map的模拟实现

map的底层结构就是红黑树,因此在map中直接封装一棵红黑树,然后将其接口包装下即可

Mymap.h

#pragma once
namespace dc
{
	template<class K, class V>
	class map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};
	public:

		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator iterator;
		typedef typename RBTree<K, const K, MapKeyOfT>::ConstIterator const_iterator;

		const_iterator begin() const
		{
			return _t.Begin();
		}

		const_iterator end() const
		{
			return _t.End();
		}

		iterator begin()
		{
			return _t.Begin();
		}

		iterator end()
		{
			return _t.End();
		}


		//bool insert(const pair<K, V>& kv)
		//{
		//	return _t.Insert(kv);
		//}

		iterator find(const K& key)
		{
			return _t.Find(key);
		}

		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}

		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = _t.Insert(make_pair(key, V()));
			return ret.first->second;
		}
	private:
		RBTree<K, pair<const K, V>, MapKeyOfT> _t;
	};
}

4.3.4 set的模拟实现

set的底层为红黑树,因此只需在set内部封装一棵红黑树,即可将该容器实现出来(具体实现可参考map)

Myset.h

#pragma once
namespace dc
{
	template<class K>
	class set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;
		typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator const_iterator;

		const_iterator begin() const
		{
			return _t.Begin();
		}

		const_iterator end() const
		{
			return _t.End();
		}

		iterator begin()
		{
			return _t.Begin();
		}

		iterator end()
		{
			return _t.End();
		}

		iterator find(const K& key)
		{
			return _t.Find(key);
		}

		pair<iterator, bool> insert(const K& key)
		{
			return _t.Insert(key);
		}

		//bool insert(const K& key)
		//{
		//	return _t.Insert(key);
		//}

	private:
		RBTree<K, const K, SetKeyOfT> _t;
	};
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醋溜马桶圈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值