- 博客(4)
- 收藏
- 关注
原创 认知实习总集篇3
5. 若k=5模型得分最好,再使用全部训练集(训练集+验证集) 对k=5模型再训练一边,再使用测试集对k=5模型做评估。只需要将若干参数传递给网格搜索对象,它自动帮我们完成不同超参数的组合、模型训练、模型评估,最终返回一组最优的超参数。是一种数据集的分割方法,将训练集划分为 n 份,拿一份做验证集(测试集)、其他n-1份做训练集。需要手动产生很多超参数组合,来训练模型。4. 使用训练集+验证集多次评估模型,取平均值做交叉验证为模型得分。• 交叉验证解决模型的数据输入问题(数据集划分)得到更可靠的模型。
2024-04-25 19:24:37 688
原创 认知实习总结篇3
也称为“城市街区距离”(City Block distance),曼哈顿城市特点:横平竖直。国际象棋中,国王可以直行、横行、斜行,所以国王走一步可以移动到相邻8个方格中的任意一个。特征的单位或者大小相差较大,或者某特征的方差相比其他的特征要大出几个数量级,容易影响。◆ 如果出现异常点,由于具有一定数据量,少量的异常点对于平均值的影响并不大。通过对原始数据进行标准化,转换为均值为0标准差为1的标准正态分布的数据。两个点在空间中的距离一般都是指欧氏距离。,闵氏距离可表示某一类种的距离。
2024-04-24 11:02:32 745 1
原创 认知实习总结篇2
1 KNN概念 K Nearest Neighbor•一个样本最相似的 k 个样本中的大多数属于某一个类别,则该样本也属于这个类别2 KNN分类流程1.计算未知样本到每一个训练样本的距离2.将训练样本根据距离大小升序排列3.取出距离最近的 K 个训练样本4.进行多数表决,统计 K 个样本中哪个类别的样本个数最多5.将未知的样本归属到出现次数最多的类别3 KNN回归流程1.计算未知样本到每一个训练样本的距离2.将训练样本根据距离大小升序排列3.取出距离最近的 K 个训练样本。
2024-04-23 18:11:54 1237
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人