基于PyTorch的Fashion-MNIST图像分类数据集处理与可视化

1. 引言

在本项目中,我们使用 PyTorch 框架加载、处理并可视化了经典的 Fashion-MNIST 图像分类数据集。
本文涵盖了完整的代码、详细注释以及执行后的输出结果,非常适合初学者参考与学习。

2. 环境准备

首先导入必要的库,并设置图片显示为 SVG 格式以提高显示质量。

%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()  # 使用SVG格式显示图像

3. 数据集下载与预处理

使用 torchvision.datasets.FashionMNIST 下载数据,并使用 ToTensor 将图片数据从PIL格式转换为 float32 类型,同时将像素值归一化到0-1之间。

# 实例化ToTensor()
trans = transforms.ToTensor()

# 下载训练集和测试集
train_data = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)
test_data = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)

# 查看数据集大小
len(train_data), len(test_data)

输出结果

(60000, 10000)

训练集有6万张图片,测试集有1万张图片。

4. 查看单个样本的尺寸

检查训练集中第一张图片的尺寸信息。

train_data[0][0].shape  # 训练数据第一个样本的维度 (通道数, 宽度, 高度)

 输出结果

torch.Size([1, 28, 28])

可以看到,每张图片是1通道(灰度图),28×28像素。

5. 可视化图像及标签

接下来定义辅助函数:将标签ID转为文字标签,并绘制多张图片。

# 将标签ID映射为文字标签
def get_fashion_mnist_labels(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat', 
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

# 显示图像函数
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
    figsize = (num_cols * scale, num_rows * scale)
    fig, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            ax.imshow(img.numpy())
        else:
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes

 从训练集中随机抽取18张图片进行展示:

x, y = next(iter(data.DataLoader(train_data, batch_size=18)))
show_images(x.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y))

效果(示意):

6. 数据迭代性能测试

测试使用DataLoader读取整个训练集需要的时间:

# 创建数据迭代器
train_iter = data.DataLoader(train_data, 256, shuffle=True, num_workers=0, drop_last=False)

timer = d2l.Timer()  # 创建计时器
for x, y in train_iter:
    continue
timer.stop()

 输出结果

4.05924654006958

即:加载完整训练集约需要4秒左右(硬件环境不同时间会略有波动)。

7. 封装数据加载函数

为了方便后续调用,将上面的步骤封装成一个函数 load_data_fashion_mnist

def load_data_fashion_mnist(batch_size, resize=None):
    # 下载Fashion-MNIST数据集,并将其加载到内存中
    trans = [transforms.ToTensor()]  # 将图像转换为张量

    if resize:
        trans.insert(0, transforms.Resize(resize))  # 若指定,先调整图像大小

    trans = transforms.Compose(trans)  # 多个变换组合

    train_data = torchvision.datasets.FashionMNIST(root="./data", train=True, transform=trans, download=True)
    test_data = torchvision.datasets.FashionMNIST(root="./data", train=False, transform=trans, download=True)

    return (data.DataLoader(train_data, batch_size, shuffle=True, num_workers=0, drop_last=False),
            data.DataLoader(test_data, batch_size, shuffle=False, num_workers=0, drop_last=False))

8. 总结

本文从最基础的环境配置、数据下载与处理、可视化展示,到性能测试与函数封装,完整梳理了Fashion-MNIST数据集在PyTorch中的处理流程。
下一步,我们可以基于此数据集继续训练深度学习模型,如MLP、多层卷积神经网络(CNN)等。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值