前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。
https://www.captainbed.cn/north
文章目录
前言
在人工智能迅猛发展的今天,大型预训练语言模型(如GPT、BERT等)已成为自然语言处理领域的核心技术。然而,这些"通用"模型在面对特定业务需求时往往表现不尽如人意。本文将深入探讨大模型微调(Fine-tuning)的技术原理,详细分析其工作机制,并重点阐述在实际业务场景中何时需要微调而非直接使用基础模型。
一、大模型微调的基本概念
1.1 什么是大模型微调?
大模型微调(Fine-tuning)是指在预训练好的大型语言模型基础上,使用特定领域或任务的数据集进行进一步训练,使模型适应特定需求的技术过程。这个过程可以形象地理解为"专家培养"——先让模型接受"通识教育"(预训练),再进行"专业培训"(微调)。
1.2 微调与预训练的关系
特性
预训练(Pretraining)
微调(Fine-tuning)
数据规模
海量无标注数据(TB级)
少量标注数据(MB-GB级)
计算资源
需要超级计算集群
可使用普通GPU服务器
训练目标
学习通用语言表示
适应特定任务或领域
耗时
数周至数月
数小时至数天
成本
数百万美元
数千至数万美元
1.3 微调的主要类型
- 全参数微调(Full Fine-tuning):调整模型所有权重参数
- 部分微调(Partial Fine-tuning):只调整部分层或参数
- 适配器微调(Adapter Fine-tuning):在模型中插入小型适配器模块
- 提示微调(Prompt Tuning)