这是一个经典的区间合并问题,可以用动态规划法来求解。动态规划方程如下:
(1)状态表示:设 f[i][j] 表示将第 i 堆石子到第 j 堆石子合并成一堆的最小代价。
(2)状态方程:f[i][j] = min{f[i][k] + f[k+1][j] + sum[i][j]},其中 i <= k < j,表示将第 i 堆到第 j 堆分成两部分,分别合并后再合并的最小代价。
(3)边界条件:f[i][i] = 0,表示单堆石子无需合并,代价为零。
(4)时间、空间复杂度分析:时间复杂度为 O(N^3),空间复杂度为 O(N^2),其中 N 为石子堆数。
动态规划法的关键是找出状态表示和状态方程,难点是如何设计出合理的状态表示和状态方程,以及如何优化时间和空间复杂度,需要确定合理的边界条件和计算顺序,即子问题的初始值或终止值,以及如何按照自底向上或自顶向下的方式遍历所有子问题。