二叉树(完全二叉树、满二叉树)

树的概念及结构

树的概念

树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
树的特点
有一个 特殊的结点,称为根结点 ,根节点没有前驱结点
除根节点外, 其余结点被分成 M(M>0) 个互不相交的集合 T1 T2 …… Tm ,其中每一个集合 Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有 0 个或多个后继
因此, 树是递归定义 的。

树的相关概念 

节点的度 :一个节点含有的子树的个数称为该节点的度; 如上图: A 的为 6
叶节点或终端节点 :度为 0 的节点称为叶节点; 如上图: B C H I... 等节点为叶节点
非终端节点或分支节点 :度不为 0 的节点; 如上图: D E F G... 等节点为分支节点
双亲节点或父节点 :若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图: A B 的父节点
孩子节点或子节点 :一个节点含有的子树的根节点称为该节点的子节点; 如上图: B A 的孩子节点
兄弟节点 :具有相同父节点的节点互称为兄弟节点; 如上图: B C 是兄弟节点
树的度 :一棵树中,最大的节点的度称为树的度; 如上图:树的度为 6
节点的层次 :从根开始定义起,根为第 1 层,根的子节点为第 2 层,以此类推;
树的高度或深度 :树中节点的最大层次; 如上图:树的高度为 4
堂兄弟节点 :双亲在同一层的节点互为堂兄弟;如上图: H I 互为兄弟节点
节点的祖先 :从根到该节点所经分支上的所有节点;如上图: A 是所有节点的祖先
子孙 :以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是 A 的子孙
森林 :由 m m>0 )棵互不相交的树的集合称为森林;

树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了, 既然保存值域,也要保存结点和结点之间 的关系 ,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的孩子兄弟表示法
typedef int DataType;
struct Node
{
 struct Node* firstChild1; // 第一个孩子结点
 struct Node* pNextBrother; // 指向其下一个兄弟结点
 DataType data; // 结点中的数据域
};

树在实际中的应用(表示文件系统的目录树结构)

 

二叉树的概念及结构

二叉树的概念

二叉树(Binary Tree)是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树 ),或者由一个根节点和两个互不相交的、分别称为根节点的左子树和右子树的二叉树组成。

由上图可以看出二叉树的特点
1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:

自然界中的二叉树

特殊的二叉树

1. 满二叉树 :一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K ,且结点总数是2^k-1,则它就是满二叉树。
2. 完全二叉树 :完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K 的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从 1 n 的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

 

 二叉树的性质

1. 若规定根节点的层数为 1 ,则一棵非空二叉树的 i 层上最多有2^{i-1} 个结点.
2. 若规定根节点的层数为 1 ,则 深度为 h 的二叉树的最大结点数是2^{h}-1
3. 对任何一棵二叉树 , 如果度为 0 其叶结点个数为n_{0}  , 度为 2 的分支结点个数为n_{2} , 则有 n_{0} = n_{2} + 1
4. 若规定根节点的层数为 1 ,具有 n 个结点的满二叉树的深度 h=log_{2}(n+1) (ps: 是log 2 为底,n+1 为对数 )
5. 对于具有 n 个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从 0 开始编号,则对 于序号为i的结点有:
  a. i>0 i 位置节点的双亲序号: (i-1)/2 i=0 i 为根节点编号,无双亲节点
  b. 2i+1<n ,左孩子序号: 2i+1 2i+1>=n 否则无左孩子
  c. 2i+2<n ,右孩子序号: 2i+2 2i+2>=n 否则无右孩子

二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

顺序存储

顺序结构存储就是使用 数组来存储 ,一般使用数组 只适合表示完全二叉树 ,因为不是完全二叉树会有空 间的浪费。而现实中使用中只有堆才会使用数组来存储。二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。

链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是 链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所 在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程 学到高阶数据结构如红黑树等会用到三叉链。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值