分部积分法的详细解释、推导过程及应用示例
分部积分法是求不定积分的一种重要方法,其核心思想源于微分的乘积法则。以下是分部积分法的详细解释、推导过程及应用示例:
分部积分法的来源
- 微分的乘积法则:若
u
u
u 和
v
v
v是
x
x
x的可导函数,则
d d x ( u v ) = u ′ v + u v ′ \frac{d}{dx}(uv) = u'v + uv' dxd(uv)=u′v+uv′ - 积分形式:对两边积分,
∫ d d x ( u v ) d x = ∫ u ′ v d x + ∫ u v ′ d x \int \frac{d}{dx}(uv) \, dx = \int u'v \, dx + \int uv' \, dx ∫dxd(uv)dx=∫u′vdx+∫uv′dx
左边积分结果为 u v + C uv + C uv+C,移项后得到:
∫ u v ′ d x = u v − ∫ u ′ v d x \int uv' \, dx = uv - \int u'v \, dx ∫uv′dx=uv−∫u′vdx - 分部积分公式:令
d
v
=
v
′
d
x
dv = v' \, dx
dv=v′dx,则
v
=
∫
d
v
v = \int dv
v=∫dv,公式可写为:
∫ u d v = u v − ∫ v d u \int u \, dv = uv - \int v \, du ∫udv=uv−∫vdu
选择 u u u 和 d v dv dv 的策略
通常遵循 ILATE 法则(优先级从高到低):
- Inverse trigonometric functions(反三角函数)
- Logarithmic functions(对数函数)
- Algebraic functions(代数函数)
- Trigonometric functions(三角函数)
- Exponential functions(指数函数)
应用示例
例1:积分 ∫ x e x d x \int x e^x \, dx ∫xexdx
- 选择: u = x u = x u=x(代数函数), d v = e x d x dv = e^x \, dx dv=exdx
- 计算: d u = d x du = dx du=dx, v = e x v = e^x v=ex
- 应用公式:
∫ x e x d x = x e x − ∫ e x d x = x e x − e x + C \int x e^x \, dx = x e^x - \int e^x \, dx = x e^x - e^x + C ∫xexdx=xex−∫exdx=xex−ex+C
例2:积分 ∫ ln x d x \int \ln x \, dx ∫lnxdx
- 选择: u = ln x u = \ln x u=lnx(对数函数), d v = d x dv = dx dv=dx
- 计算: d u = 1 x d x du = \frac{1}{x} \, dx du=x1dx, v = x v = x v=x
- 应用公式:
∫ ln x d x = x ln x − ∫ x ⋅ 1 x d x = x ln x − x + C \int \ln x \, dx = x \ln x - \int x \cdot \frac{1}{x} \, dx = x \ln x - x + C ∫lnxdx=xlnx−∫x⋅x1dx=xlnx−x+C
例3:积分 ∫ x cos x d x \int x \cos x \, dx ∫xcosxdx
- 选择: u = x (代数函数), d v = cos x d x u = x (代数函数),dv = \cos x \, dx u=x(代数函数),dv=cosxdx
- 计算: d u = d x , v = sin x du = dx , v = \sin x du=dx,v=sinx
- 应用公式:
∫ x cos x d x = x sin x − ∫ sin x d x = x sin x + cos x + C \int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C ∫xcosxdx=xsinx−∫sinxdx=xsinx+cosx+C
例4:积分 ∫ e x sin x d x \int e^x \sin x \, dx ∫exsinxdx(需两次分部积分)
- 第一次分部积分:
- u = e x , d v = sin x d x u = e^x , dv = \sin x \, dx u=ex,dv=sinxdx
- d u = e x d x , v = − cos x du = e^x \, dx , v = -\cos x du=exdx,v=−cosx
- 结果: − e x cos x + ∫ e x cos x d x -e^x \cos x + \int e^x \cos x \, dx −excosx+∫excosxdx
- 第二次分部积分:
- u = e x , d v = cos x d x u = e^x ,dv = \cos x \, dx u=ex,dv=cosxdx
- d u = e x d x , v = sin x du = e^x \, dx , v = \sin x du=exdx,v=sinx
- 结果: e x sin x − ∫ e x sin x d x e^x \sin x - \int e^x \sin x \, dx exsinx−∫exsinxdx
- 联立方程:
∫ e x sin x d x = − e x cos x + e x sin x − ∫ e x sin x d x \int e^x \sin x \, dx = -e^x \cos x + e^x \sin x - \int e^x \sin x \, dx ∫exsinxdx=−excosx+exsinx−∫exsinxdx
移项得:
2 ∫ e x sin x d x = e x ( sin x − cos x ) ⟹ ∫ e x sin x d x = e x ( sin x − cos x ) 2 + C 2 \int e^x \sin x \, dx = e^x (\sin x - \cos x) \implies \int e^x \sin x \, dx = \frac{e^x (\sin x - \cos x)}{2} + C 2∫exsinxdx=ex(sinx−cosx)⟹∫exsinxdx=2ex(sinx−cosx)+C
总结
分部积分法通过将复杂的积分转化为更简单的积分,适用于被积函数为乘积形式的情况。关键在于合理选择 u u u 和 d v dv dv ,并遵循 ILATE 法则。多次应用或结合其他方法(如换元积分)可解决更复杂的问题。