【分部积分法的详细解释、推导过程及应用示例】

分部积分法是求不定积分的一种重要方法,其核心思想源于微分的乘积法则。以下是分部积分法的详细解释、推导过程及应用示例:

分部积分法的来源

  1. 微分的乘积法则:若 u u u v v v x x x的可导函数,则
    d d x ( u v ) = u ′ v + u v ′ \frac{d}{dx}(uv) = u'v + uv' dxd(uv)=uv+uv
  2. 积分形式:对两边积分,
    ∫ d d x ( u v )   d x = ∫ u ′ v   d x + ∫ u v ′   d x \int \frac{d}{dx}(uv) \, dx = \int u'v \, dx + \int uv' \, dx dxd(uv)dx=uvdx+uvdx
    左边积分结果为 u v + C uv + C uv+C,移项后得到:
    ∫ u v ′   d x = u v − ∫ u ′ v   d x \int uv' \, dx = uv - \int u'v \, dx uvdx=uvuvdx
  3. 分部积分公式:令 d v = v ′   d x dv = v' \, dx dv=vdx,则 v = ∫ d v v = \int dv v=dv,公式可写为:
    ∫ u   d v = u v − ∫ v   d u \int u \, dv = uv - \int v \, du udv=uvvdu

选择 u u u d v dv dv 的策略

通常遵循 ILATE 法则(优先级从高到低):

  • Inverse trigonometric functions(反三角函数)
  • Logarithmic functions(对数函数)
  • Algebraic functions(代数函数)
  • Trigonometric functions(三角函数)
  • Exponential functions(指数函数)

应用示例

例1:积分 ∫ x e x   d x \int x e^x \, dx xexdx
  • 选择 u = x u = x u=x(代数函数), d v = e x   d x dv = e^x \, dx dv=exdx
  • 计算 d u = d x du = dx du=dx v = e x v = e^x v=ex
  • 应用公式
    ∫ x e x   d x = x e x − ∫ e x   d x = x e x − e x + C \int x e^x \, dx = x e^x - \int e^x \, dx = x e^x - e^x + C xexdx=xexexdx=xexex+C
例2:积分 ∫ ln ⁡ x   d x \int \ln x \, dx lnxdx
  • 选择 u = ln ⁡ x u = \ln x u=lnx(对数函数), d v = d x dv = dx dv=dx
  • 计算 d u = 1 x   d x du = \frac{1}{x} \, dx du=x1dx v = x v = x v=x
  • 应用公式
    ∫ ln ⁡ x   d x = x ln ⁡ x − ∫ x ⋅ 1 x   d x = x ln ⁡ x − x + C \int \ln x \, dx = x \ln x - \int x \cdot \frac{1}{x} \, dx = x \ln x - x + C lnxdx=xlnxxx1dx=xlnxx+C
例3:积分 ∫ x cos ⁡ x   d x \int x \cos x \, dx xcosxdx
  • 选择 u = x (代数函数), d v = cos ⁡ x   d x u = x (代数函数),dv = \cos x \, dx u=x(代数函数),dv=cosxdx
  • 计算 d u = d x , v = sin ⁡ x du = dx , v = \sin x du=dxv=sinx
  • 应用公式
    ∫ x cos ⁡ x   d x = x sin ⁡ x − ∫ sin ⁡ x   d x = x sin ⁡ x + cos ⁡ x + C \int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C xcosxdx=xsinxsinxdx=xsinx+cosx+C
例4:积分 ∫ e x sin ⁡ x   d x \int e^x \sin x \, dx exsinxdx(需两次分部积分)
  1. 第一次分部积分
    • u = e x , d v = sin ⁡ x   d x u = e^x , dv = \sin x \, dx u=exdv=sinxdx
    • d u = e x   d x , v = − cos ⁡ x du = e^x \, dx , v = -\cos x du=exdxv=cosx
    • 结果: − e x cos ⁡ x + ∫ e x cos ⁡ x   d x -e^x \cos x + \int e^x \cos x \, dx excosx+excosxdx
  2. 第二次分部积分
    • u = e x , d v = cos ⁡ x   d x u = e^x ,dv = \cos x \, dx u=exdv=cosxdx
    • d u = e x   d x , v = sin ⁡ x du = e^x \, dx , v = \sin x du=exdxv=sinx
    • 结果: e x sin ⁡ x − ∫ e x sin ⁡ x   d x e^x \sin x - \int e^x \sin x \, dx exsinxexsinxdx
  3. 联立方程
    ∫ e x sin ⁡ x   d x = − e x cos ⁡ x + e x sin ⁡ x − ∫ e x sin ⁡ x   d x \int e^x \sin x \, dx = -e^x \cos x + e^x \sin x - \int e^x \sin x \, dx exsinxdx=excosx+exsinxexsinxdx
    移项得:
    2 ∫ e x sin ⁡ x   d x = e x ( sin ⁡ x − cos ⁡ x )    ⟹    ∫ e x sin ⁡ x   d x = e x ( sin ⁡ x − cos ⁡ x ) 2 + C 2 \int e^x \sin x \, dx = e^x (\sin x - \cos x) \implies \int e^x \sin x \, dx = \frac{e^x (\sin x - \cos x)}{2} + C 2exsinxdx=ex(sinxcosx)exsinxdx=2ex(sinxcosx)+C

总结

分部积分法通过将复杂的积分转化为更简单的积分,适用于被积函数为乘积形式的情况。关键在于合理选择 u u u d v dv dv ,并遵循 ILATE 法则。多次应用或结合其他方法(如换元积分)可解决更复杂的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值