4.2.3 积分法(二)——分部积分法

本文详细介绍了分部积分法的应用范围及其六个重要案例,并总结了不定积分的基本公式及换元积分法等内容,通过实例帮助读者更好地理解并掌握分部积分技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

emmmm想想词,算了想不出来,既然不定积分和导数是反操作,那就从导数开始说吧,先看一个导数公式。在这里插入图片描述
就不解释变形过程了,上图其实就是分部积分法的计算过程,总之是分成两个步骤,先分部再积分。至于+C等到完全积分积出来之后再加

目前我们总结过的不定积分的计算工具有基本公式、第一类换元积分法和第二类换元积分法。上述工具其实各有各的用处,基本公式就不说了,第一类换元积分法是一般的解题首选,而碰到无理函数,在第一类换元积分法不起作用的情况下,就要使用第二类换元积分法。本篇中总结的分布积分法的使用范围有6种,6种,6种重要的事情说3遍。

顺带一提,不定积分中的几个数字记一下:基本公式一共23个其中常、幂、指、对、三角、平方和差公式数量分别为1+2+2+0+10+8;积分方法算上本篇总结的分布积分法共有两个大类三种方法。

分布积分使用范围
  • case1 幂函数与指数函数的积
  • case2 幂函数与对数函数的积
  • case3 幂函数与三角函数的积
  • case4 幂函数与反三角函数的积
  • case5·指数函数与sin或cos的积
  • case6 secnxdx或cscnxdx 当n为奇数的时候
注解
  • 重复一遍,分部积分法两个步骤,先分部再积分
  • case2:对于幂函数和对数函数之积的情况,将对数函数放在d前面,毕竟我也不知道对数函数的不定积分是个啥
  • case3:幂函数和三角函数之积,出现的三角函数如果是sinx和cosx,要降次降成1次(半角公式),如果出现了tanx、secx、cotx、cscx必须要求是偶次,三角函数放在d后面
  • case4:幂函数与反三角函数之积,幂函数放到d后边,因为反三角到不了后边
  • case5:对于指数函数与sin/cos之积,分部的步骤随便谁到后面,但是这种情况解法不同于之前,等下用例题说明
  • case6:只有奇次才需要分部积分,偶次不需要分部积分

例题

由于本篇情况分类较多,例题部分也就多一点
例1在这里插入图片描述

例2在这里插入图片描述

例3在这里插入图片描述

例4在这里插入图片描述

例5在这里插入图片描述

例6在这里插入图片描述

例7在这里插入图片描述

例8在这里插入图片描述

例9在这里插入图片描述

例10在这里插入图片描述

例11 在这里插入图片描述
慢慢看,跟着写,体会数学之美【doge】
本篇完

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值