1.海洋锋面
海洋锋,特性明显不同的两种或几种水体之间的狭窄过渡带。它们可用温度、盐度、密度、速度、颜色、叶绿素等要素的水平梯度,或它们的更高阶微商来描述;即一个锋带的位置可以用一个或几个上述要素的特征量的强度来确定它。
2.海洋温度锋的梯度表示
温度梯度是判断的海表温度锋面一个主要方法,可以通过求得SST的梯度来判断锋面特征(图1),梯度计算公式
右边第一项: tmp_x(i,j)=0.5*(sst(i+1,j)-sst(i-1,j))/dx(i,j);
右边第二项: tmp_y(i,j)=0.5*(sst(i,j+1)-sst(i,j-1))/dy(i,j);
梯度: grd_t(i,j)=sqrt(tmp_x^2+tmp_y^2);
dx(i,j)可以表示为(i-1,j)和(i,j)的中间点到(i+1,j)和(i,j)的中间点之间的距离,即以(i,j)为中心,向i-1和i+1方向各延伸半个格点。计算时要考虑纬度差异造成之间的差异,比如从121°E到121.5°E,在北纬20°和在赤道上的,它们之间的距离是不一样的。
提示:1°的距离约为111.1km;
dx(i,j)可以认为两点经度差乘以1°的距离再乘以纬度的余弦值;
dx(i,j)=111.1*0.05*cos(lat0(i,j)*pi/180.); 0.05表示数据是1/20°
dy(i,j) 可以认为两点纬度差乘以1°的距离。
dy(i,j)=111.1*0.05; 0.05表示数据是1/20°(数据分辨率为1/20°)
3.数据获取
OSTIA数据简介
OSTIA(Operational Sea Surface Temperature and Sea Ice Analysis)数据集是由英国气象局(UK Met Office)运行和提供的全球海表温度(SST)和海冰分析产品。该系统结合了卫星数据和现场观测数据,生成高分辨率的海表温度和海冰面积分数的每日分析数据。
网址:Global Ocean OSTIA Sea Surface Temperature and Sea Ice Reprocessed | Copernicus Marine Service
4.绘图代码
本文以东中国海为例,选取2、5、8、11四个月份。SST数据2月、5月、8月、11月画出东中国海的各季海表温度锋,数据为2011-2012东中国海2月、5月、8月、11月月平均海表温度。
clc;
files = {
'OSTIA_2011_2012_02.nc',
'OSTIA_2011_2012_05.nc',
'OSTIA_2011_2012_08.nc',
'OSTIA_2011_2012_11.nc'
};
% 创建一个新的图形窗口
figure;
% 循环读取每个文件,并绘制温度梯度图
for i = 1:length(files)
filename = files{i}; % 当前文件名
sst = ncread(filename, 'ostia_sst'); % 读取海表温度数据
lon = ncread(filename, 'lon'); % 读取经度数据
lat = ncread(filename, 'lat'); % 读取纬度数据
% 计算 dx 和 dy
[lat_grid, lon_grid] = ndgrid(lat(:,1), lon(1,:)); % 确保维度符合 SST 数据
dx = 111.1 * 0.05 * cosd(lat_grid); % dx 取决于纬度,0.05 表示 1/20° 分辨率
dy = 111.1 * 0.05; % dy 固定不变
% 计算温度梯度的 x 和 y 分量
tmp_x = 0.5 * (sst(3:end, 2:end-1) - sst(1:end-2, 2:end-1)) ./ dx(2:end-1, 2:end-1);
tmp_y = 0.5 * (sst(2:end-1, 3:end) - sst(2:end-1, 1:end-2)) ./ dy;
% 计算总温度梯度 grd_t
grd_t = sqrt(tmp_x.^2 + tmp_y.^2);
% 创建子图 (2行2列的子图,第i个图)
subplot(2, 2, i);
% 设置 Mercator 投影
m_proj('mercator', 'longitudes', [min(lon(:)) max(lon(:))], 'latitudes', [min(lat(:)) max(lat(:))]);
% 使用 pcolor 绘制梯度图
m_pcolor(lon(2:end-1, 2:end-1), lat(2:end-1, 2:end-1), grd_t);
shading interp; % 平滑显示
colorbar; % 添加颜色条
title(['A22海科星颉卢瑜廷 9220115118 SST Gradient - ' files{i}],'fontsize', 5);
xlabel('Longitude','fontsize', 8);
ylabel('Latitude','fontsize', 8);
% 设置颜色映射,使锋面更清晰
colormap(othercolor('BuDRd_12', 50));
clim([0 0.1]); % 设置 colorbar 范围为 0 到 0.1
xlabel(colorbar, '℃/km');
% 添加高分辨率经纬度网格
m_grid('linewi', 1.5, 'tickdir', 'out', 'fontsize', 7, ...
'gridcolor', 'k', 'linestyle', '--', ...
'xline', 1, 'yline', 1); % 网格间隔设为1°,可按需调整
m_gshhs('hc','color','k');
m_gshhs('ib','color','k');
m_gshhs('fr2','color','b');
end
% 保存为高分辨率图像文件
print(gcf, ' sst gradient.png', '-dpng', '-r480'); % 保存为 PNG 文件
5.成果图展示
6.结果分析
1. 2月(冬季)
分布特征:温度锋集中在沿岸区域(如东海、黄海和台湾海峡北部),特别是在黑潮延伸区域和陆架边缘。北部锋区强度显著,尤其是东海至黄海一带,梯度值超过 0.08°C/km。
强度特点:整体强度最强,反映出冬季冷空气作用下冷暖水团的强烈对峙。
可能原因:冷空气频繁入侵,冷水向南扩展,与南方暖流(如黑潮)交汇,形成强烈的温度梯度。
冬季季风的驱动加强了沿岸流和上升流过程,增强了沿岸锋区。
2. 5月(春季)
分布特征:温度锋主要分布在渤海和黄海北部沿岸,梯度范围逐渐扩大。
强度特点:锋区强度较高,但略低于冬季,梯度值在 0.04–0.08°C/km。
可能原因:春季气温逐渐回升,沿岸水体受太阳辐射加热,形成暖流,与深层冷水交汇。
3. 8月(夏季)
分布特征:温度锋分布范围最广,覆盖整个研究区域,但强度有所减弱。
近岸区域的锋区依然显著,尤其是在长江口、东海陆架区及黑潮区域。
强度特点:锋区强度相对较弱,梯度值多在 0.02–0.06°C/km 之间。
可能原因:夏季太阳辐射增强,海表水温均匀升高,降低了表层水体的水平梯度。
但近岸水体因淡水注入(如长江冲淡水)与海水混合,导致局部温度梯度增加。
4. 11月(秋季)
分布特征:温度锋重新集中在朝鲜半岛南部沿岸和黑潮延伸区,锋区范围缩小但强度增强。特别是黑潮延伸区域梯度显著,与周围冷水体形成明显对比。
强度特点:锋区强度有所恢复,接近春季水平,梯度值在 0.04–0.08°C/km。
可能原因:秋季气温下降,冷水逐渐南下,表层混合层深度增加。
黑潮暖流与冷空气入侵形成的冷水交界区加剧了温度梯度。
以上代码及实验过程仅供参考
————————————————