C++实现归并排序题目

目录

 例1

 例2

 例3

 例4


例1

912. 排序数组

参考代码

class Solution {
public:
    vector<int> tmpnums;
    vector<int> sortArray(vector<int>& nums) {
        tmpnums.resize(nums.size());
        mergeSort(nums, 0, nums.size() - 1);
        return nums;
    }

    void mergeSort(vector<int>& nums, int left, int right)
    {
        if(left >= right) return;
        int mid = (left + right) >> 1;
        mergeSort(nums, left, mid);
        mergeSort(nums, mid + 1, right);
        
        int cur1 = left, cur2 = mid + 1, i = left;
        while(cur1 <= mid && cur2 <= right)
            tmpnums[i++] = nums[cur1] <= nums[cur2] ? nums[cur1++] : nums[cur2++];
        while(cur1 <= mid)
            tmpnums[i++] = nums[cur1++];
        while(cur2 <= right)
            tmpnums[i++] = nums[cur2++];            
        for(int i = left; i <= right; i++)
            nums[i] = tmpnums[i];
    }
};

 例2

LCR 170. 交易逆序对的总数

这里的nums就是record

①升序:nums[cur1]和nums[cur2]比较,小的放到tmp数组里,也随之++,如果用cur1来对应区间[mid + 1, cur2] 的话会重复,因为这时候nums[cur1] > nums[cur2],却是cur2++,这会导致cur1,重复配对区间

②降序:降序是把大的往tmp里面放,nums[cur1]大的时候正好又++,不会重复

参考代码

class Solution {
public:
    vector<int> tmp;
    int reversePairs(vector<int>& record) {
        tmp.resize(record.size());
        return mergeSort(record, 0, record.size() - 1);
    }
    int mergeSort(vector<int>& record, int left, int right)
    {
        int ret = 0;
        if(left >= right) return ret;
        int mid = (left + right) >> 1;
        ret += mergeSort(record, left, mid);
        ret += mergeSort(record, mid + 1, right);
        int cur1 = left, cur2 = mid + 1, i = left;
        while(cur1 <= mid && cur2 <= right)
        {
            // if(record[cur1] <= record[cur2])
            // {
            //     tmp[i++] = record[cur1++];
            // }
            // else
            // {
            //     ret += mid - cur1 + 1;
            //     tmp[i++] = record[cur2++];
            // }
            if(record[cur1] <= record[cur2])
            {
                tmp[i++] = record[cur2++];
            }
            else
            {
                ret += right - cur2 + 1;
                tmp[i++] = record[cur1++];
            }
        }
        while(cur1 <= mid) tmp[i++] = record[cur1++];
        while(cur2 <= right) tmp[i++] = record[cur2++];
        for(int i = left; i <= right; i++)
        {
            record[i] = tmp[i];
        }
        return ret;
    }
};

 例3

315. 计算右侧小于当前元素的个数

解释:①给nums绑定一个index数组,,通过index[cur1]得到这个数对应的最初始的下标,也就是这一步:ret[index[cur1]] += right - cur2 + 1;

②使用降序方便,因为题目是求,某个值的右边比他值小的个数,cur1正好是左边的区间,就不会导致ret数组的第一元素为0,且使用cur1,可以使ret数组最后一个值为0,其二升序的逻辑就是不对的,降序原理是cur2去左边找比它大的,但是这里要去右边找,所以只能用降序做

错误:①写回时for写错while,②tmpIndex[i++] = index[cur2++];对应成nums[cur2++],导致堆溢出,③注意最后一个for是<= 因为区间是[left, right]

参考代码

class Solution {
public:
    vector<int> tmpNums, index, tmpIndex, ret;
    vector<int> countSmaller(vector<int>& nums) {
        int n = nums.size();
        tmpNums.resize(n);
        index.resize(n);
        tmpIndex.resize(n);
        ret.resize(n);
        for(int i = 0; i < nums.size(); i++)
            index[i] = i;
        mergeSort(nums, 0, n - 1);
        return ret;
    }

    void mergeSort(vector<int>& nums, int left, int right)
    {
        if(left >= right) return;
        int mid = (left + right) >> 1;
        mergeSort(nums, left, mid);
        mergeSort(nums, mid + 1, right);
        int cur1 = left, cur2 = mid + 1, i = left;
        while(cur1 <= mid && cur2 <= right)
        {
            if(nums[cur1] <= nums[cur2])
            {
                tmpNums[i] = nums[cur2];
                tmpIndex[i++] = index[cur2++];
            }
            else
            {
                ret[index[cur1]] += right - cur2 + 1;
                tmpNums[i] = nums[cur1];
                tmpIndex[i++] = index[cur1++];
            }
        }
        while(cur1 <= mid)
        {
            tmpNums[i] = nums[cur1];
            tmpIndex[i++] = index[cur1++];
        }
        while(cur2 <= right)
        {
            tmpNums[i] = nums[cur2];
            tmpIndex[i++] = index[cur2++];
        }
        for(int i = left; i <= right; i++)
        {
            nums[i] = tmpNums[i];
            index[i] = tmpIndex[i];
        }
    }

};

 例4

493. 翻转对

解析:在合并前计算个数,升序降序都可以

下面两段,效果一样

while(cur1 <= mid && cur2 <= right)
{
    while(cur2 <= right && nums[cur1] / 2.0 <= nums[cur2]) cur2++;
    ret += right - cur2 + 1;
    cur1++;
}
while(cur1 <= mid && cur2 <= right)
{
    if(nums[cur1] / 2.0 > nums[cur2])
        ret += right - cur2 + 1, cur1++;
    else 
        cur2++;
}

 降序参考代码

class Solution {
public:
    vector<int> tmp;
    int reversePairs(vector<int>& nums) {
        tmp.resize(nums.size());
        return mergeSort(nums, 0, nums.size() - 1);
    }
    int mergeSort(vector<int>& nums, int left, int right)
    {
        if(left >= right) return 0;
        int mid = (left + right) >> 1;
        int ret = 0;
        ret += mergeSort(nums, left, mid);
        ret += mergeSort(nums, mid + 1, right);

        int cur1 = left, cur2 = mid + 1, i = left;
        while(cur1 <= mid && cur2 <= right)
        {
            while(cur2 <= right && nums[cur1] / 2.0 <= nums[cur2]) cur2++;
            ret += right - cur2 + 1;
            cur1++;
        }
        cur1 = left, cur2 = mid + 1;
        while(cur1 <= mid && cur2 <= right)
            tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur2++] : nums[cur1++];
        while(cur1 <= mid) tmp[i++] = nums[cur1++];
        while(cur2 <= right) tmp[i++] = nums[cur2++]; 
        for(int i = left; i <= right; i++)
        {
            nums[i] = tmp[i];
        }
        return ret;
    }
};

 升序参考代码

class Solution {
public:
    vector<int> tmp;
    int reversePairs(vector<int>& nums) {
        tmp.resize(nums.size());
        return mergeSort(nums, 0, nums.size() - 1);
    }
    int mergeSort(vector<int>& nums, int left, int right)
    {
        if(left >= right) return 0;
        int mid = (left + right) >> 1;
        int ret = 0;
        ret += mergeSort(nums, left, mid);
        ret += mergeSort(nums, mid + 1, right);

        int cur1 = left, cur2 = mid + 1, i = left;
        while(cur1 <= mid && cur2 <= right)
        {
            while(cur1 <= mid && nums[cur1] / 2.0 <= nums[cur2]) cur1++;
            ret += mid - cur1 + 1;
            cur2++;
        }
        cur1 = left, cur2 = mid + 1;
        while(cur1 <= mid && cur2 <= right)
            tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur1++] : nums[cur2++];
        while(cur1 <= mid) tmp[i++] = nums[cur1++];
        while(cur2 <= right) tmp[i++] = nums[cur2++]; 
        for(int i = left; i <= right; i++)
        {
            nums[i] = tmp[i];
        }
        return ret;
    }
};

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值