-
接口
-
内部埋点
-
后端埋点方案
-
无埋点方案
-
url规约系统
-
用户级别
-
版本跟踪
-
页面级别
-
块级别
-
事件级别
-
搜索
-
露出 曝光 展示 滑动 用户 访问 下载 装机 等统计方式
-
运营使用的外部工具
-
各种广告平台
-
广点通
-
达摩盘
-
知乎DSP
-
今日头条系
-
百度系
-
微博营销工具
-
…
-
各种流量平台
-
各种统计分析平台
-
销售使用的外部工具
-
商家查询平台
-
启信宝
-
企查查
-
天眼查
-
赤狐
-
CRM工具
-
外部数据(非公司IT支撑)
-
爬虫平台开发利用推进
-
API对接
-
WIFI 探针类
-
分类
-
WIFI
-
BLE
-
Zigbee
-
蓝牙
-
算法
-
信号强弱
-
围栏
-
人脸视频类
-
faceid 设计
-
图片帧
-
第三方数据
-
第三方埋点
-
GA
-
百度
-
友盟
-
其他
-
外部数据
-
数据报告
-
199IT(100+)
-
艾瑞(100+)
-
IT橘子
-
国家互联网中心
-
恒大研究院
-
亿欧智库
-
易观数据
-
中国通信研究院
-
腾讯数据实验室
-
阿里研究中心
-
商业合作
-
数据交换
-
专项购买
-
流量互补
-
竞品数据
-
分析竞品列表
-
关联品牌
-
关联人物
-
关联商家
-
热点主题
-
讨论度
-
新闻动态频率
-
正负面情绪
-
风险信息 商业环境
-
爬虫获取商家 商品 评论等业务数据
-
从一些公开平台获取统计数据
-
新媒体
-
微信公众号
-
微博
-
知乎
-
行业数据
-
大盘数据
-
行业动态数据
-
统计数据
-
国家统计局
-
国外统计局
-
专业部门统计数据
-
数据资讯
-
大行业
-
本行业
-
其他
-
三:数据价值
-
1.数据清洗
-
日志数据清洗(UDF spark straming )
-
业务数据清洗
-
维度数据抽取
-
数据缺失与修复
-
NLP语义化
-
图片识别等
-
2.数据仓库
-
分层
-
Operational Data Store(ODS) 原始操作数据
-
General Data Mart(GDM)清洗后通用数据
-
Data WareHouse (DW)数据集市
-
用户
-
行为
-
商家
-
商品
-
…
-
Dimension Data(DIM)维度数据
-
规范
-
权限规范
-
ETL规范
-
调度规范
-
ETL
-
元数据(Atlas查看和标记)
-
业务元数据
-
ETL元数据
-
数据元数据
-
3.统计报表
-
分类
-
维度
-
指标
-
数据可视化
-
5.数据报告
-
抓重点业务或关键路径
-
体系化叙述
-
重点数据解释
-
编写参考 玩转keynote
-
4.商业智能
-
关键指标与转化
-
博弈分析法(找到博弈方,找到博弈方的冲突与矛盾)
-
利益方
-
行动
-
信息获取
-
损失
-
均衡点
-
优化
-
策略
-
收益
-
企业价值评估法(找到利益保持或者增长的关键点或者业务流程量化KPI) 上图参考案例
-
行业参考(标准行业的指标体系)
-
保证少而精 结果导向 可衡量 一致性
-
影响业务决策
-
商家风控
-
用户风控
-
影响运营决策
-
AARRR模型
-
RFM模型
-
运营增强工具
-
用户分层理论
-
影响老板决策
-
全局跟踪报表
-
关键节点转化数据跟踪
-
市场大盘的搜集与预估
-
竞争对手信息挖掘
-
效率周期的提醒和关注
-
业务预测与告警
-
6.业务赋能
-
数据预警
-
数据预测
-
数据查询
-
对运营支持的数据工具
-
对业务销售支持的数据工具
-
销售人员的常用工具数据化支撑
-
业务节点的数据跟进
-
7.数据产品
-
(私域数据)CDP&DMP
-
收集企业私域数据
-
建立私域数据之间相同顾客/用户/受众之间的映射匹配关系 .构建以顾客/用户受众(人)为核心的数据结构(即ID+人的标签,或称ID+人的属 性的数据结构)
-
基于以上数据结构,建立个体画像或人群画像
-
DMP/CDP只针对营销和客户运营的场景,它们可以与企业的渠道管理、备货、物流以及供应链甚至生产环节相联通,并根据需要为这些环节提供数据,但它们并不负责收集和处理这些环节的数据。
-
2B产品
-
行业标准与数据共享
-
垂直行业指数项目
-
针对商家端产品
-
商家快速获取数据
-
商家获取精准数据
-
商家数据增值服务
-
2C产品
-
结合产品规划
-
用户信息(关系)打通
-
结合产品2C的优惠券 通知 推送等
-
推荐
-
搜索
-
风控
-
舆情
-
用户画像
-
反作弊
-
8.场景探索
-
IOT场景
-
AI场景探索
-
数据交换场景
-
规则漏洞-业务场景漏洞-效率优化
-
9.企业数据化成熟度进化路径
-
四:数据安全
-
1.企业数据分级
-
普通
-
基础业务数据
-
用户产生的非免敏感数据
-
敏感
-
用户信息
-
商家信息
-
机密
-
合同
-
推广
-
活动
-
订单
-
绝密
-
财务
-
战略
-
融资
-
2.数据隐私保护
-
公众数据
-
Personal Identifiable Information(PII级别)
-
用户唯一标识(因公司而异)
-
核心业务数据订单 优惠券 等(掩码)
-
3.平台权限控制
-
数据导出权限控制
-
账号跟踪与密钥更换
-
统一LDAP账号建设
-
数据使用申请
-
大数据产品系 - 账号统一登录平台
-
4.数据流程规范
-
需求对接规范
-
数据订正规范
-
提取数据规范
-
业务数据变更修正
-
五:质量保障
-
1.平台与资源保障
-
平台监控
-
服务监控
-
调度监控
-
计算监控
-
2.数据质量
-
日志数据质量保障
-
开发埋点跟踪与工单系统
-
需求流程梳理与制定
-
加入环节测试,统一APP PCWAP 小程序的开发SDK
-
业务数据质量保障
-
业务一致性
-
数据主动被动监测与检测系统开发
-
领域统一主键
-
业务数据表备注变 字段 新增 删除 表新增等的跟踪通知
-
数据仓库与计算逻辑质量保障
-
抽样检测
-
数据准确性跟踪
-
数据仓库调度监控与计算逻辑review
-
3.统一口径
-
专人负责业务领域模型
-
数据仓库主题域宽表建设
-
需求对接明确责任人和需求对接人
-
4.故障跟进
-
钉钉报警群的建设与跟进
-
值班制度
-
软实力
-
六:个人素质
-
1.体系化建设
-
快速了解一个体系
-
渠道
-
专业图书
-
技术官网
-
github
-
processon 里的推荐功能
-
超链接 技术博客
-
知乎
-
体系报告网站(参考 数据获取-外部数据-数据报告)
-
各种行业平台网站
-
谷歌百度
-
找朋友聊
-
加微信QQ群
-
记录整理
-
找个工具记录最散漫的疯狂的阅读与吸取
-
最好用表格来划分横向维度和纵向维度
-
消除杂音
-
刨除过程中一些过时的资料或者概念
-
尽量找原版的设计与理解
-
快速形成自己的理解
-
聚合
-
分类
-
排序
-
深入
-
系统计划
-
修正策略
-
发现方向不对了要懂得立即止损
-
投资视角看公司
-
商业模式
-
完整的产品、服务和信息流体系,不完全决定着盈利模式但是衡量盈利模式的基础
-
简单易懂一句话说明白的模式就是好模式
-
在产业上下游关系所处的位置
-
定价权在哪里
-
企业和客户关系的好坏
-
盈利模式
-
探求企业利润来源、生产过程以及产出,对企业经营要素进行价值识别和管理 关注持续力
-
团队
-
关注公司的团队架构,工作任务如何进行分工、分组和协调合作 。关注CXO
-
专一性
-
创新性
-
管理者优势
-
用户来源
-
关注在特定的公司下他们是如何获客的,获客的效果与方法是否可以持续健康的保持优势
-
现金流
-
公司对于内部价值的挖掘和在商业上的资金变现能力
-
成本结构
-
成本结构
-
决定因素
-
成本产业优化
-
变现能力
-
路径依赖
-
公司内部对主营业务的依赖性,对于新业务拓展的阻碍。在快速调整方向时能动性的高低
-
烧钱速度
-
竞争对手
-
赛道内竞争对手的强弱与个数,竞争对手的资方背景。竞争对手对红海的竞争性与蓝海的开拓性
-
(赛道)行业特性
-
垂直行业内的一些特殊关注点和可能发现的价值挖掘点,也是可能构建护城河的点
-
价值流失
-
价值守护的能力,包括资产数据 用户,针对于流失的方法策略是否有意识和具体的动作
-
护城河
-
抵御竞争者的保护措施
-
财务效率
-
边际成本
-
回报率
-
品牌效应
-
天花板
-
公司所在的行业是否已经进入饱和状态,是否供过于求
-
关注行业或者需求拐点
-
关注小行业的大公司
-
关注新旧势力平衡关系
-
关注面对天花板公司采取的策略
-
2.业务破局
-
了解业务
-
老板 高管 经理
-
对钱感兴趣的人肯定对数据感兴趣(财务三张表)
-
资产负债表
-
利润表
-
现金流量表
-
投其所好
-
多渠道的了解老板画像
-
试探数据价值的关注度
-
换位思考
-
从他们的角度去考虑他们遇到的困难,不解和所做的决定
-
不要被他们的思维固化(在其位谋其政)影响你对于数据价值的思考
-
全面的体系 重要的分级
-
全面的体系化建设(基于对行业 业务 数据 的宽泛认知) 不赘述
-
永远要记住摸清主线
-
按照重要程度(看势)做事情的分级
-
观察对方的底线(长期)
-
技术 产品 运营
-
技术体系初步印象
-
前端(ios android pc tv) 涉及到埋点日志事情
-
后端(微服务 链路 数据库) 涉及到业务数据入库和日志收集
-
掌握全局(局部)数据库
-
先全面后局部的感觉下数据库设计(如果有ER图提供最好)
-
感觉下量级与增速
-
深入了解产品的规划
-
找到契合点 不要越界
-
数据价值为主 外层的展现为辅
-
产品方向的数据价值多数来自C端 所以 推荐 广告 用户画像等为主 不同的行业考虑下特性应用(O2O IOT 新零售 AI的落地应用)
-
拿出诚意才会得到配合
-
站在开发者角度去尽量减轻他们的负担
-
日志与埋点的配合
-
业务数据入库配合
-
底层运维支持配合
-
技术层面的分享带给别人更多理解相关技术的机会
-
是否需要数据产品经理
-
涉及到产品规划和业务赋能的最好有数据产品对接
-
关于数据报表分析的最好让数据分析人员进入对接一线
-
销售 业务 财务
-
良好的沟通从兴趣开始
-
数据价值来源于解决B端面临问题
-
是否能提供有价值的数据让业务跑得更快
-
能否提供销售更直接的客户服务数据
-
财务的事情佛系对待
-
合适的机会跟他们一起开会,反复强调的内容里面就有重点和痛点
-
多花时间研究他们的工作流程
-
流程最能体现价值(优化 提速 转化 效率)
-
接触工作流程中可以更深刻的理解业务
-
关键指标一定会有所提及(不懂找资料学习再沟通) 绕不过的钱
-
记录关键指标 自己先琢磨在找懂的人沟通
-
遇到不分享的可以先想办法解决他的一些问题,无论大小,展现诚意。记住自己的目标
-
分析痛点
-
将痛点归类(部门 角色 数据源 数据价值)
-
归类后痛点间的关联关系找主线
-
能解决的痛点才是痛点
-
缩小范围解决头部需求反手解决次类需求
-
痛点案例
-
基础数据指标与总体和各部门的KPI跟踪
-
流量广告投放优化问题
-
潜在用户挖掘与运营转化问题
-
用户深度运营模型问题
-
用户流量扩张和用户粘性问题
-
羊毛党风控问题【成本优化】
-
如何快速成交问题【效率转化】
-
多单率,交叉消费,多场景消费问题
-
竞品商家数据的融合
-
数据和用户流失和丢失问题
-
专注行动
-
象限法(重要紧急四象限)
-
优先处理 重要且紧急 紧急不重要的
-
阶段性的处理重要不紧急的(这种事情要记录在本本上)
-
行动前的影响与价值预估
-
可能对其他部门或人造成的工作加重减轻与正负面影响
-
此行动能得到的可能价值(对需求方 相关人 团队 自己)
-
可拆解的任务才能行动
-
行动计划保证在一个可控范围内(人员 时间 资源 )
-
任务的串并行尝试
-
人员维度的安排
-
时间维度的安排
-
行动中的修正与反馈
-
寻找一个反馈对象(最好是需求方)
-
修正来源于对结果的不可控(保证损失最小)
-
拿到结果一定要说话(不要当哑巴 付出得到回报天经地义)
-
打算说给谁听
-
准备好PPT(参见玩转keynote)
-
时间地点
-
3.数据解读
-
考虑受众
-
想要说给谁听是重中之重
-
了解对方的工作特性用类比方式的去阐述数据
-
实事求是 轻易不下结论
-
全局意识
-
局部业务专研分析思维
-
小心求证,在给出数据前多做检验
-
会看数据
-
维度-指标-特征-缺失-差值-聚合-分类-排序
-
比率-中数-众数-方差-维度相关性
-
多维度的去思考和验证
-
寻找数据点(点) - 寻找主数据(线) - 串联数据的顺序关系(面)
-
要有全局意识和局部业务专研分析思维,理解金字塔原理,自上而下表达,自下而上思考,从上提出疑问,从下寻找答案
-
4.工具利用
-
时间管理工具
-
Omni Focus
-
Tyme2
-
时间四象限
-
重要且紧急
-
重要不紧急
-
紧急不重要
-
不紧急不重要
-
快速记录工具
-
备忘录
-
Wiki
-
Macdown
-
扩展思维工具
-
MindNode
-
Processon
-
学习成长工具
-
优质微信公众号
-
人人都是产品经理
-
知乎
-
5.落地执行
-
落地能力
-
站在对方去思考
-
会讲故事让一件事情的参与者多方受益
-
角色设定 一定要在落地的时候事情是给哪个角色制定的,没目标群体的事情落地了也没用
-
计划时间点里程碑要明确
-
执行能力
-
时间管理
-
对于每一步的执行时间要有清醒的认知,到了时间点完不成要想后面的进度和对应方案
-
执行计划的时间点不要做太多的冗余也不要完全不留 短期的控制在10%左右的增量
-
同步进行的事情也要分清楚优先级
-
在一定的考虑内 周末也是用来buffer的
-
要清楚团队的有效工作时间范围,上午?下午?晚上?人不是机器总是要在某个时间段休息的
-
沟通反馈
-
要明确细分点的负责人 要巧妙的跟进进度
-
接受不完美
-
这个一定要接受,架构不完美可以完善,速度慢可以优化,产品功能完成度超过80%即可
-
接受了不完美不代表不朝着完美的方向努力,快速迭代项目分期是不错的解决方案
-
抓住重点80%
-
分清主次,没有任何的产品或者功能或者技术是满足所有人和场景的
-
要清醒的认知什么是对公司有价值的 什么是对团队有价值的
-
6.清醒复盘
-
复盘前的思考
-
为了解决什么目的,如果没想清楚不需要复盘
-
复盘的人员范围
-
时间控制
-
何时复盘
-
不要形式主义,在出现问题后记得一定要复盘
-
当信心缺失
-
当项目受挫
-
当可能骄傲自满
-
避坑总结
-
7.玩转keynote
-
确定主题与讲述思路
-
解决痛点模式
-
开篇直接从场景开始带出痛点
-
然后讲述痛点的原因 别人如何解决 我们如何解决
-
具体的方案落地执行与风险点
-
突出主题模式
-
体验报告模式
-
融资招商模式
-
数据报告模式
-
流程讲解模式
-
技术分享模式
-
讲述靠说不靠堆叠
-
言简意赅
-
归纳总结
-
利用模板来快速制作和辅助思路
-
参考模板
-
Layouts for Keynote(App Store有售)
-
PC6合集 http://www.pc6.com/mach/macmuban/
-
辅助思路
-
当有些思路阻碍可以看看模板上被人是如何处理和展现的
-
运用模板的特殊元素来装扮自己的文案
-
基础色调选取与排版建议
-
色调选择
-
多用过度色 原则上整体别超过5个
-
颜色可以用吸管 从浅入深或由深入浅波动选择
-
黑白灰为常用过度配色
-
分清极暖色 极冷色 暖色 冷色 微暖 微冷
-
色彩的对比 平衡 混合 多练习
-
排版建议
-
建议用“细黑”的字体,比如冬青黑体,华文雅黑,微软雅黑light等
-
节奏感:尺寸大小,上下位移,旋转,间距,就是不能让文字之间稳当地排在一起
-
巧用各种图形 可以更形象化的让人理解
-
大纲最好列在每页的面包屑上
-
巧用动画
-
8.行业关注
-
多读报告(参考 数据获取-外部数据-数据报告)
-
专业领域
-
大数据行业发展与新技术更迭
-
算法paper
-
开发领域新技术
-
业务领域
-
行业业务特性
-
产品角度
-
运营角度
-
兴趣领域
-
IOT
-
新零售
-
七:技术能力
-
系统工程
-
前端
-
后端
-
数据库
-
系统功能方向
-
CRM
-
ERP
-
CMS
-
BOPS
-
商家后台
-
…
-
数据分析
-
算法应用
-
回归算法
-
神经网络
-
SVM(支持向量机)
-
聚类算法
-
K-Means
-
DBSCAN
-
…
-
机器学习
-
有监督学习
-
决策树
-
朴素贝叶斯分类器
-
最小二乘法
-
逻辑回归
-
支持向量机(SVM)
-
无监督学习
-
聚类算法
-
主成分分析(PCA)
-
SVD矩阵分解
-
独立成分分析(ICA)
-
增强学习
-
降维算法
-
推荐算法
-
基于物品内容的推荐
-
基于用户相似度的推荐
-
其他
-
八:产品与运营思维
-
产品方向
-
B端(在数据价值里面已经有说)
-
C端(在数据价值里面已经有说)
-
运营方向(垂直人群 +营销场景)
-
品牌运营
-
渠道
-
公众号
-
小程序
-
微信官网
-
地推
-
纸媒
-
地铁
-
KOL合作
-
品牌融合合作
-
品牌跨界 品牌和场景跨界
-
品牌基本面
-
讲故事 不讲故事
-
营造感觉 营造氛围
-
视觉VI
-
品牌代言人
-
媒体策略
-
大水漫灌
-
精细化投放(例子)
-
传播策略
-
场景化
-
裂变分享(例子)
-
场景化植入
-
团组操盘
-
预算跟进
-
市场运营
-
市场大盘
-
竞争对手
-
商家
-
行业
-
品牌
-
内部效率
-
策略方案
-
预算申请
-
流量运营
-
推广投放
-
会员体系
-
用户增长
-
用户运营
-
价值 保证基本的活跃和贡献
-
价值的定义和活跃的定义
-
价值参考标准
-
做指标的评分加权都找到重要的价值维度
-
等级划分(案例)
-
等级特权(案例)
-
数据指标
-
基本指标(示例)
-
注册 登陆 搜索 下单 购物车 等
-
活跃
-
日/周/月 活
-
流失
-
复购
-
付费
-
深度(漏斗)
-
留存
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
png)
-
用户运营
-
价值 保证基本的活跃和贡献
-
价值的定义和活跃的定义
-
价值参考标准
-
做指标的评分加权都找到重要的价值维度
-
等级划分(案例)
-
等级特权(案例)
-
数据指标
-
基本指标(示例)
-
注册 登陆 搜索 下单 购物车 等
-
活跃
-
日/周/月 活
-
流失
-
复购
-
付费
-
深度(漏斗)
-
留存
[外链图片转存中…(img-H4682VJL-1714280401959)]
[外链图片转存中…(img-a1DjrbZs-1714280401959)]
[外链图片转存中…(img-Ff54iSd0-1714280401960)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新