[洛谷]P2066 机器分配(dfs or dp)

文章讨论了一道编程题目,涉及两种解法。第一种是动态规划(DP),通过设置二维数组f[i][j]表示前i个公司分配j台机器的最大利润,利用状态转移方程求解。第二种是深度优先搜索(DFS),通过递归枚举所有可能的机器分配方案。两段ACcode分别展示了DP和DFS的实现,并给出了相应的输出方案。
摘要由CSDN通过智能技术生成

1:解前的内心挣扎ops

看一眼数据这么小,enm........,那就搜索水过吧~(狗头)

等等正解还是dp!,我们这是平时练习,要练!dp呢还是搜索呢,啊啊啊啊啊,dp吧~,dp好难,不!~,硬着头皮上,最后up决定两种都写!~(狗头)

2:

dp思路:

一道经典的区间DP练习题。

设f[i][j]为前i个公司总共分配j台机器的最大利润。对于第i家子公司,我们可以给其分配的机器台数为:0,1,2……m

所以在该区间内枚举一个值k,状态转移方程即为:

f[i][j]=max(f[i-1][j-k],f[i][j]);

那么,如何处理方案输出问题呢?

我们设p[i][j][h]对于前i个公司共分配j台机器的最优方案,第h个公司应分配多少台机器,当状态发生转移时,更新path数组即可。最终的答案就存放在p[n][m][i]之中。

注意这里转移的时候是小于等于(有等于这样子就可以做到按字典序从小到大排列)

ACcode:

#include<bits/stdc++.h>
using namespace std;
const int N=20;
int f[N][N],w[N][N],p[N][N][N],n,m;
void solve(){
   cin>>n>>m;
   for(int i=1;i<=n;i++)
   for(int j=1;j<=m;j++)
   cin>>w[i][j];
   
   for(int i=1;i<=n;i++)//物品 
   for(int j=0;j<=m;j++)//背包容量 
   for(int k=0;k<=j;k++){//体积 
   	
   	if(f[i][j]<=f[i-1][j-k]+w[i][k]){
   		
   		f[i][j]=f[i-1][j-k]+w[i][k];
   		
   		for(int h=1;h<i;h++) p[i][j][h]=p[i-1][j-k][h];
   		p[i][j][i]=k;
	   }
   }
   cout<<f[n][m]<<"\n";
   for(int i=1;i<=n;i++){
   	cout<<i<<" "<<p[n][m][i]<<"\n";
   }
}
int main(){
	
	ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
	solve();
	return 0;
}

3:dfs就是枚举每种方法(没啥好说,很经典~)

ACcode:(代码思路挺清晰的)

#include<bits/stdc++.h>
using namespace std;
const int N=20;
int n,m,a[N],b[N],w[N][N],mmax=-1;
void dfs(int pos,int sum,int k){
	
	if(k>m) return;
	
	if(pos>n){
		if(sum>mmax){
			mmax=sum;
			for(int j=1;j<=n;j++) b[j]=a[j];
		}
		return;
	}
	
	for(int i=0;i<=m;i++){
		a[pos]=i;
		dfs(pos+1,sum+w[pos][i],k+i);
	}
}
void solve(){
  cin>>n>>m;
  for(int i=1;i<=n;i++)
  for(int j=1;j<=m;j++)
  cin>>w[i][j];
  
  dfs(1,0,0);
  cout<<mmax<<"\n";
  for(int i=1;i<=n;i++) cout<<i<<" "<<b[i]<<"\n";

}
int main(){
	
	ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
	solve();
	return 0;
}

over~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值