xtu oj 1354 Robots

题目描述

在一个n×m的格子上,机器人一开始位于左下角,它每次可以沿格子线往上或者往右行走一步。另外它还有一种技能,可以在一个格子中,从左下角跳到右上角。 请问,机器人从左下角到达右上角,一共有多少种不同的方法?

de99091e1ab94ce18b2eb36ddb885a96.png

输入

第一行是一个整数T(1≤T≤10000),表示样例的个数。 以后每行一个样例为两个整数n,m(1≤n,m≤100)。

输出

每行输出一个样例的结果,因为这个数量可能很大,请将结果对109+7取模。

样例输入

3 
1 1 
2 1 
2 2

样例输出

3 
5 
13

AC代码

#include<stdio.h>
#define N 1000000007
long long dp[105][105]={};
void init(){
    int i,j;
    for(i=0;i<105;i++){
        dp[0][i]=1;
    }
    for(i=0;i<105;i++){
        dp[i][0]=1;
    }
    for(i=1;i<105;i++){
        for(j=1;j<105;j++){
            dp[i][j]=(dp[i-1][j]+dp[i][j-1]+dp[i-1][j-1])%N;
        }
    }
}
int main()
{
    int T;
    scanf("%d",&T);
    init();
    while(T--){
        int n,m;
        scanf("%d%d",&n,&m);
        printf("%I64d\n",dp[n][m]);
    }
}

典型的动态规划题目,动态规划是利用历史记录避免重复计算。做题三步骤:

1、定义数组元素的含义,本题dp[n][m]表示当机器人走到(n,m)位置的路径数

2、找出数组元素的关系式,类似数学归纳法,可以类比青蛙跳台阶问题,利用历史数据推出新的元素值。本题dp[n][m]=dp[i-1][j]+dp[i][j-1]+dp[i-1][j-1]

3、找初始值,这个容易遗漏,要全面分析。本题初始值为在第0行或第0列路径数均为1

本题最后结果对一个大整数求模,部分初学者会只在最后的结果求模,这样是不对的,因为最后的结果可能会非常大,造成数据溢出问题。所以,每次运算都要求模

青蛙跳台阶动态规划问题

题目:  一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多上种跳法。

输入:6

输出:13

代码展示

#include<stdio.h>
int f(int n){
    if(n<=1)return 1;
    int dp[1005]={};//定义数组元素的含义 
    dp[0]=0,dp[1]=1,dp[2]=2;
    int i;
    for(i=3;i<=n;i++){
        dp[i]=dp[i-1]+dp[i-2];//找出关系式 
    }
    return dp[n];
}
int main()
{
    int n;
    scanf("%d",&n);
    printf("%d",f(n));
 } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值