题目描述
在一个n×m的格子上,机器人一开始位于左下角,它每次可以沿格子线往上或者往右行走一步。另外它还有一种技能,可以在一个格子中,从左下角跳到右上角。 请问,机器人从左下角到达右上角,一共有多少种不同的方法?
输入
第一行是一个整数T(1≤T≤10000),表示样例的个数。 以后每行一个样例为两个整数n,m(1≤n,m≤100)。
输出
每行输出一个样例的结果,因为这个数量可能很大,请将结果对109+7取模。
样例输入
3 1 1 2 1 2 2
样例输出
3 5 13
AC代码
#include<stdio.h> #define N 1000000007 long long dp[105][105]={}; void init(){ int i,j; for(i=0;i<105;i++){ dp[0][i]=1; } for(i=0;i<105;i++){ dp[i][0]=1; } for(i=1;i<105;i++){ for(j=1;j<105;j++){ dp[i][j]=(dp[i-1][j]+dp[i][j-1]+dp[i-1][j-1])%N; } } } int main() { int T; scanf("%d",&T); init(); while(T--){ int n,m; scanf("%d%d",&n,&m); printf("%I64d\n",dp[n][m]); } }
典型的动态规划题目,动态规划是利用历史记录避免重复计算。做题三步骤:
1、定义数组元素的含义,本题dp[n][m]表示当机器人走到(n,m)位置的路径数
2、找出数组元素的关系式,类似数学归纳法,可以类比青蛙跳台阶问题,利用历史数据推出新的元素值。本题dp[n][m]=dp[i-1][j]+dp[i][j-1]+dp[i-1][j-1]
3、找初始值,这个容易遗漏,要全面分析。本题初始值为在第0行或第0列路径数均为1
本题最后结果对一个大整数求模,部分初学者会只在最后的结果求模,这样是不对的,因为最后的结果可能会非常大,造成数据溢出问题。所以,每次运算都要求模
青蛙跳台阶动态规划问题
题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多上种跳法。
输入:6
输出:13
代码展示
#include<stdio.h>
int f(int n){
if(n<=1)return 1;
int dp[1005]={};//定义数组元素的含义
dp[0]=0,dp[1]=1,dp[2]=2;
int i;
for(i=3;i<=n;i++){
dp[i]=dp[i-1]+dp[i-2];//找出关系式
}
return dp[n];
}
int main()
{
int n;
scanf("%d",&n);
printf("%d",f(n));
}