Python数据分析常用的7个开源库


包含编程资料、学习路线图、源代码、软件安装包等!【[点击这里]】!

在这里插入图片描述

1.NumPy (Numerical Python)

简介:NumPy 是 Python 科学计算的基础库,提供了高性能的多维数组对象(“ndarray”)以及用于数组操作的各种工具。它是许多其他数据科学库的基础。
主要功能:
  • 高效的数组和矩阵运算:NumPy 的核心是"ndarray"对象,它允许进行向量化运算,避免了 Python 循环的低效,极大地提高了计算速度。支持广播机制,使得不同形状的数组之间也能进行运算。
  • 强大的数学函数:提供了大量的数学函数,包括三角函数、指数函数、对数函数、统计函数等,可以直接应用于数组元素。
  • 随机数生成:提供了各种概率分布的随机数生成函数,用于模拟实验、数据生成等。
  • 线性代数运算:支持矩阵乘法、求逆、特征值分解等线性代数运算。
适用场景:数值计算、科学计算、图像处理、机器学习等。
import numpy as np  
  
# 创建数组  
arr = np.array([1, 2, 3, 4, 5])  
matrix = np.array([[1, 2], [3, 4]])  
  
# 数组运算  
print(arr * 2)  # 元素乘以 2  
print(np.sin(arr)) # 对每个元素求正弦  
  
# 矩阵运算  
print(matrix.T) # 转置  
print(np.dot(matrix, matrix))  # 矩阵乘法  

2.Pandas (Python Data Analysis Library)

简介: Pandas 提供了高性能、易用的数据结构和数据分析工具,是数据分析的核心库。它基于 NumPy 构建,但提供了更高级的数据结构和操作。
主要功能:
  • “Series"和"DataFrame”:"Series"类似于一维数组,带标签的数组;"DataFrame"类似于表格,由多个"Series"组成。这是 Pandas 最重要的两种数据结构。
  • 数据清洗和预处理:提供了处理缺失值(“NaN”)、重复值、数据类型转换等功能,是数据分析流程中至关重要的一步。
  • 数据选择和切片:提供了灵活的数据选择和切片方式,可以使用标签、位置、布尔索引等。
  • 数据分组和聚合:可以根据某一列或多列进行分组,然后进行统计、求和、平均值等聚合操作。
  • 时间序列分析:专门处理时间序列数据,提供了日期和时间相关的函数和工具。
  • I/O 操作:方便地读取和写入各种数据格式(CSV、Excel、JSON、SQL 数据库等)。
适用场景:数据清洗、数据探索、数据分析、数据可视化等。
import pandas as pd  
  
# 创建 DataFrame  
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'], 'Age': [25, 30, 28, np.nan], 'City': ['New York', 'London', 'Paris', 'Tokyo']}  
df = pd.DataFrame(data)  
  
# 处理缺失值  
df['Age'].fillna(df['Age'].mean(), inplace=True) # 用平均值填充  
  
# 数据分组和聚合  
print(df.groupby('City')['Age'].mean())  
  
# 读取 CSV 文件  
# df = pd.read_csv('data.csv')  

3.Matplotlib

简介:Matplotlib 是 Python 中最常用的绘图库,提供了丰富的绘图工具,可以创建各种静态、动态和交互式图表。
主要功能:
  • 各种图表类型:折线图、散点图、柱状图、饼图、直方图、箱线图等。
  • 图表定制:可以自定义图表的各种属性,如标题、标签、颜色、线条样式、图例等。
  • 子图:可以在同一张图表中绘制多个子图,方便进行数据比较。
适用场景:数据可视化、数据探索、结果展示等。
import matplotlib.pyplot as plt  
  
x = [1, 2, 3, 4, 5]  
y = [2, 4, 1, 3, 5]  
  
plt.plot(x, y, marker='o', linestyle='--') # 绘制带圆圈标记的虚线  
plt.xlabel('X Axis')  
plt.ylabel('Y Axis')  
plt.title('Line Chart')  
plt.show() 

4.Seaborn

简介:Seaborn 是基于 Matplotlib 的高级可视化库,提供了更美观、更高级的图表类型,并且更易于使用。它专注于统计数据可视化。
主要功能:
  • 统计图形:提供了各种统计图形,如分布图(histplot, kdeplot, displot)、关系图(scatterplot, lineplot, relplot)、分类图(boxplot, violinplot, catplot)等。
  • 美观的图表样式:内置了多种美观的图表样式,可以轻松创建专业级的图表。
  • 与 Pandas 集成:可以方便地使用 Pandas 的 DataFrame 进行绘图,代码更加简洁。
适用场景:数据可视化、统计分析、探索性数据分析等。

5.SciPy (Scientific Python)

简介:SciPy 是基于 NumPy 的科学计算库,提供了各种科学计算工具,包括优化、积分、插值、信号处理、统计等。
主要功能:
  • 优化:提供了各种优化算法,如最优化、最小化、根查找等。
  • 积分:提供了数值积分算法。
  • 插值:提供了各种插值方法,用于数据拟合和预测。
  • 信号处理:提供了信号处理工具,如滤波、频谱分析等。
  • 统计:提供了各种统计函数和概率分布。
适用场景:科学计算、工程计算、信号处理、图像处理等。

6.Statsmodels

简介:Statsmodels 提供了各种统计模型和统计测试工具,专注于统计建模和推断。
主要功能:
  • 线性模型:提供了线性回归、广义线性模型(GLM)、混合效应模型等。
  • 时间序列分析:提供了时间序列模型、平稳性检验、自相关和偏自相关函数等。
  • 统计测试:提供了各种统计检验方法,如 t 检验、卡方检验、F 检验等。
适用场景:统计建模、计量经济学、时间序列分析等。

7.Scikit-learn (sklearn)

简介:Scikit-learn 是 Python 中最常用的机器学习库,提供了各种机器学习算法和工具。
主要功能:
  • 分类:支持向量机 (SVM)、决策树、随机森林、朴素贝叶斯等。
  • 回归:线性回归、岭回归、逻辑回归等。
  • 聚类:K 均值聚类、DBSCAN、层次聚类等。
  • 降维:主成分分析 (PCA)、线性判别分析 (LDA) 等。
  • 模型选择和评估:交叉验证、网格搜索、各种评估指标等。
适用场景:机器学习、数据挖掘、模式识别等。

这些库在数据分析中扮演着不同的角色,通常需要结合使用才能完成复杂的数据分析任务。例如,使用 Pandas 进行数据清洗和预处理,使用 Matplotlib 或 Seaborn 进行数据可视化,使用 NumPy 进行数值计算,使用 Scikit-learn 进行机器学习建模。掌握这些库,可以有效地进行各种数据分析工作。

图片

总结

  • 最后希望你编程学习上不急不躁,按照计划有条不紊推进,把任何一件事做到极致,都是不容易的,加油,努力!相信自己!

文末福利

  • 最后这里免费分享给大家一份Python全套学习资料,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,也可以和我一起来学习交流呀。
包含编程资料、学习路线图、源代码、软件安装包等!【[点击这里]】领取!
  • ① Python所有方向的学习路线图,清楚各个方向要学什么东西
  • ② 100多节Python课程视频,涵盖必备基础、爬虫和数据分析
  • ③ 100多个Python实战案例,学习不再是只会理论
  • ④ 华为出品独家Python漫画教程,手机也能学习

可以扫描下方二维码领取【保证100%免费在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值