数据结构-算法的空间复杂度

文章介绍了空间复杂度的概念,作为衡量算法所需额外存储空间的指标,它关注算法运行中开辟的新空间数量。文中通过举例,如冒泡排序、斐波那契数列的实现,阐述了如何分析和计算空间复杂度,并强调了空间复杂度在优化算法和考虑硬件资源利用中的重要性。
摘要由CSDN通过智能技术生成

目录

1.0:前言

2.0:空间复杂度

2.1:定义

2.2:理解

3.0:例题

4.0:对复杂度的理解

1.0:前言

        我们在评判一个算法的优劣时,即需要考虑时间资源还要考虑空间资源 。因此,时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。

算法的优劣,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

2.0:空间复杂度

2.1:定义

        空间复杂度与时间复杂度一样也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
        空间复杂度不是程序占用了多少bytes的空间,而是额外开辟空间的多少,简而言之,空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
        注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定

2.2:理解

        空间复杂度是从算法的思想出发,体会在整个算法过程中,为了完成算法逻辑而开辟出的新的空间个数的总和。也使用大O渐近表示法,继续沿用它的规则。

3.0:例题

//空间复杂度
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end){
         int exchange = 0;
         for (size_t i = 1; i < end; ++i){
             if (a[i-1] > a[i]){
               Swap(&a[i-1], &a[i]);
               exchange = 1;
              }
         }
         if (exchange == 0)
            break;
    }
}

我们首先来看一下这个算法,它的空间复杂度就是它为了完成这一算法从而新创建的(新开辟的)空间的个数,在这里size_t end,  int exchange  ,size_t i 是算法新开辟的空间,算法新开辟的空间个数为常数个,所以用大O的渐近表示法表示该算法的空间复杂度为O\left ( 1 \right )

//空间复杂度
long long* Fibonacci(size_t n)
{
    if(n==0)
    return NULL;
    long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; ++i){
    fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }
    return fibArray;
}

我们来看这串代码,实现斐波那契数列的问题,完成这一算法动态内存开辟了(n+1)个空间,每个空间大小为sizeof(long long)。所以该算法的空间复杂度为O\left ( N \right )

//空间复杂度
long long Fac(size_t N){
    if(N == 0)
    return 1;
  return Fac(N-1)*N;
}

接着,我们看一下这串递归代码,Fac(N)递归调用Fac(N-1)

接着Fac(N-1)调用Fac(N-2)

...........

直到调用Fac(0)时才开始返回

为此,递归算法一共开辟了N+1块Fac空间,所以空间复杂度为O\left ( N \right )

//空间复杂度
long long Fib(size_t N)
{
    if(N < 3)
    return 1;
  return Fib(N-1) + Fib(N-2);
}

对这个算法而言,通过

Fib(N)调用Fib(N-1)和Fib(N-2)

Fib(N-1)调用Fib(N-2)和Fib(N-3)

Fib(N-2)调用Fib(N-3)和Fib(N-4)

直到右侧率先出现Fib(2)  Fib(1)  Fib(0)时,再通过空间的复用,完成算法

也就是说,只需要创建N+1块空间就能完成此算法,

因此,空间复杂度为O\left ( N \right )

4.0:对复杂度的理解

        其实,无论是时间复杂度还是空间复杂度,他们都是用来评判一个算法的优劣的,因为基于对不同计算机不同硬件来说,相同的程序在不同的CPU上面运行的时间是不相同的,这取决于CPU性能的不同,但是,研究算法整体过程中起决定性因素的语句执行的次数,就可以理性的分析出算法的优劣,这就是时间复杂度。而空间复杂度研究的是完成这一算法额外开辟空间的个数,通过研究开辟空间的个数,就能解决由于硬件不同不同程序在不同计算机下运算效率的问题。最后,通过时间复杂度和空间复杂度的标准就能理性的评判算法的优劣。

上述信息都是个人的理解,如有不足,请大家指教!!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值