目录
前言
最近开始了概率论的期末复习,本篇文章理论上来说可以应对大多数学校的期末考试。仅作学习分享,如有谬误欢迎指正。
本篇文章树状图框架可自取(.xmind文件):HolasRep: Hola的资料分享仓库!
本篇文章主要参考资料如下:
b站 框框老师 的网课:第一章:随机事件及其概率(一)_哔哩哔哩_bilibili
12.28初版:第五章过后的知识铺垫处待补充解释;类似题还未更新;大数定理部分还没有什么题;期末考试前会持续更新 。
12.28晚更,更新了大部分解释,剩余工作以补充习题为主。
第一章:随机变量及其概率
考点1.由四大公式求概率
知识铺垫:
总结:
记住四个公式的基本形式,在做题时灵活运用即可
题目1描述:
解题思路:
🌟
,则P(ABC)
P(AB)
类似题:
题目2描述:
解题思路:
🌟在做题时,将 P(A-B) 化为 P(A) - P(AB) 是常常会用到的操作。
类似题:
题目3描述:
解题思路:
🌟
![]()
类似题:
题目4描述:
解题思路:
🌟若两事件相互独立,则两事件的条件概率与原来没有变化
类似题:
解答:
核心在于减法公式的使用
考点2.古典概型求概率
知识铺垫:
其实就是高中的知识,没啥好说的
总结:
题目描述:
解题思路:
🌟古典概型的两个特点: 有有限个基本事件;每个基本事件发生的可能性相等
类似题:
考点3.全概率公式和贝叶斯公式
知识铺垫:
总结:
全概率用来以小算大,贝叶斯用来以大算小
题目1描述:
解题思路:
up主给出的做题步骤值得借鉴
类似题:
题目2描述:
解题思路:
类似题:
解答:
强烈建议所有的题都要自己写一遍,不要认为答案对了就够了,还要追求表述的规范性。
考点4.伯努利模型求概率
知识铺垫:
总结:
记住公式就行,实际靠高中知识就能解决
题目描述:
解题思路:
🌟记住计算公式就行
类似题:
第二章:一位随机变量及其分布
考点1.离散型随机变量求分布律
知识铺垫:
要明白分布律是怎么画的
总结:
题目描述:
解题思路:
类似题:
解答:
注意表述规范
考点2.利用常见的离散型分布求概率
知识铺垫:
常见离散型分布:
总结:
0-1,二项,超几何都异曲同工,注意一下几何分布和泊松分布。
题目描述:
解题思路:
🌟此题为二项分布,注意计算公式即可
类似题:
解答:
1.二项分布近似为泊松分布
2.注意思路,采用对立事件的方法来计算
考点3.连续型分布的相关计算
知识铺垫:
搞清楚概率密度函数和分布函数的定义
总结:
题目1描述:
解题思路:
🌟
![]()
类似题:
题目2描述:
解题思路:
🌟1.概率密度函数具有归一性 2.概率密度函数积分得到分布函数 3.注意严谨性,不定积分后是带常数的,还需要进一步计算
类似题:
题目3描述:
解题思路:
🌟
![]()
类似题:
考点4.利用常见的连续型分布模型进行计算
知识铺垫:
常见连续型分布:
总结:
这三种分布的分布函数和概率密度函数都需要记,之后会给出常见分布的相关函数的总结。
题目1描述:
解题思路:
🌟
![]()
类似题:
题目2描述:
解题思路:
🌟1.注意正态分布的概率密度函数 2.注意正态分布的标准化方法 3.
类似题:
考点5.离散型变量x的函数分布
知识铺垫:
这类题很简单,先求取值再求概率即可。
总结:
题目描述:
解题思路:
🌟先求取值,再求概率
类似题:
类似题:
考点6.连续型变量x的函数分布
知识铺垫:
给出常见分布的相关函数
总结:
题目描述:
解题思路:
🌟核心:
![]()
类似题:
类似题:
类似题:
第三章:二维随机变量及其分布
考点1.二维离散型随机变量的分布
知识铺垫:
离散型变量的联合、边缘分布律、题哦啊见分布律、独立是很好理解的,根据分布律表格就可以全部解决,具体方法看下面的题就行。
总结:
题目描述:
解题思路:
类似题:
考点2.二维连续型随机变量的分布
知识铺垫:
总结:
看上图即可。
题目描述:
解题思路:
类似题:
类似题:
第四章:随机变量的数学特征
考点1.常见分布的数学特征
知识铺垫:
总结:
记下来就好。
题目1描述:
解题思路:
🌟
并且注意,-2x应该视作+(-2x)
类似题:
题目2描述:
解题思路:
🌟
![]()
类似题:
考点2.离散型随机变量的协方差、相关系数
知识铺垫:
总结:
题目描述:
解题思路:
🌟注意由分布律算方差的方法:1.先算平方的期望,再减去期望的平方2.先算出期望,再用每个值减去期望再平方再乘对应的概率。
类似题:
考点3.连续型随机变量的协方差、相关系数
知识铺垫:
总结:
题目描述:
解题思路:
类似题:
第五、六章:大数定理、中心极限定理、数理统计基本概念
考点1.大数定律
知识铺垫:
可以看看:
大数定理的通俗理解(辛钦、伯努利、切比雪夫大数定理) - 知乎
总结:
题目描述:
解题思路:
🌟直接套切比雪夫不等式
类似题:
考点2.中心极限定理
知识铺垫:
总结:
独立同分布的变量之和近似服从正态分布。
题目1描述:
解题思路:
🌟变量间相互独立,则它们和的期望等于期望的和,和的方差等于方差之和
类似题:
题目2描述:
解题思路:
🌟0-1分布的期望为p,方差为p(1-p)
类似题:
考点3.三个重要分布
知识铺垫:
总结:
要记住三种分布对应的形式,以便在考试中灵活地使用。
1.卡方分布:正态分布平方之和
2.t分布:正态分布除以根下卡方除以n
3.F分布:“卡分之卡”
题目1描述:
解题思路:
类似题:
题目2描述:
解题思路:
类似题:
第七章:参数估计
考点1.未知参数的矩估计和极大似然估计
知识铺垫:
总结:
先记住步骤流程(不难)。
关于矩估计:
什么是矩
矩估计的核心思想是用样本矩(其实就是均值)近似总体矩(即期望)(矩估计不唯一,为了计算简单,尽可能用低阶矩。)
关于极大似然估计:
核心思想是让样本发生的概率最大的参数值是最合理的,也就是说要让样本中各个数出现的概率之积最大。由此思想,便可理解极大似然估计每一步步骤的原因了:
构建样本似然函数(把概率之积表示出来,以便求其最大值)->取对数(取了对数才方便求导求驻点)->求导,求驻点(导数为零的点,原函数取极值)->求出的便是最合理的参数
题目描述:
解题思路:
🌟注意这里的似然函数的最后是
而不是
类似题:
考点2.估计量的无偏性和有效性
知识铺垫:
总结:
无偏性:检验期望,看与总体对应的估计量是否有偏差
有效性:检验方差,看与总体对应估计量的差距
题目描述:
解题思路:
类似题:
最右边挡住的部分是
考点3.未知参数的区间估计
知识铺垫:
可以看看这篇文章,里面讲述了枢轴变量是怎么求出来的(框框老师的建议是直接背下来):【概率论】- (1)区间估计 - 知乎
总结:
什么叫计算置信区间:这一类题,都会让在一定的置信度下计算期望值或者是方差值的置信区间,其实就是让我们去算一个区间,期望值和方差值落在这个区间里的概率大于等于置信度。
为什么是算枢轴变量,再将枢轴变量放到区间中来算:在估计参数
的置信区间是,用
来近似
,但
服从的是一个一般的正态分布,所以要进行一些转化,如果总体方差已知,那就用标准化的流程将其转化为标准正态分布,如果总体方差未知,那就带入样本方差将其转化为t分布。
关于枢轴变量为啥在不同情况下是那样的形式,书上有这样四句定理
其中1,3的证明超过本书范围,而1,2,3结合可以发现可以推出来4
这一部分的内容,靠背诵就能解决很多问题。
题目描述:
解题思路:
🌟这部分最高效率的方法是硬背,考试的时候查表就可以了。
我在学这部分时常常混淆一个概念:上侧分位数。
一定要记住,是点右侧部分的面积等于
类似题:
第八章:假设检验
考点1.正态总体下均值
的假设检验
知识铺垫:
总结:
其实假设检验与上面的区间估计很类似,区间估计是给一个置信度让求区间,而假设检验类似于它的逆过程,需要做的也是根据一个求出拒绝域(查表即可),再将假设量带入假设检验量(实际就是枢轴变量),看它满不满足在拒绝域内,如果在就将其拒绝。
题目描述:
解题思路:
类似题:
考点2.正态总体下方差
的检验
知识铺垫:
总结:
题目描述:
解题思路:
类似题:
第九章
考点:线性回归
题目描述:
题目解答
总结
12.28初版,整体已完成。还有部分内容之后会持续更新。
12.28晚更,更新了大部分解释,剩余工作以补充习题为主。