我打算以后都这么复习了,因为书上的东西老要忘掉。
我们是法方的教材所以可能会略有不同。
我不会讲得太细,一些概念自己去搜
大概是:
- 三段论
- 词和公式
- 树和括号
- 真值表和逻辑公式化简
- 合取范式析取范式及其转化
- 存在,任意全称量词及其否定式
三段论–syllogisms
三段论包括一个大前提,一个小前提,一个结论
比如著名的“苏格拉底三段论”:
大前提:所有的人都是要死的;
小前提:苏格拉底是人;
结论:所以苏格拉底是要死的。
用欧拉图表示就是:
判断真假也比较容易,一般要把所有可能情况列出来,都满足就是真
完整答题:
。It’s about carnivores©, about fish(F), and about a kind of animal that has teeth(T).(1.列出集合)
。We can draw the following diagram(2.画出欧拉图):
。So the conclusion can be deduced from the premises, and the syllogism is true.(3.判断真假)
个人感觉三段论是推理的最小单位,小于或大于三个都会有问题
找到一篇不错的文章,而且对生活有益。
三段论逻辑
词与公式
判断话语是否完整:就是他是不是公式
这是准则:
例题:
不赘述。
树和高度,括号和权重
注意:高度是从0开始的,树的结点是逻辑运算符,左右要保持和原公式一致
括号与权重:
括号其实保证了公式的唯一可读性,即:不会有歧义
第一个括号后权重为1,之后遇到开括号 “(” , +1,闭括号“)”,-1
意思是:开括号(权重为P)与权重为(P-1)的最近的闭括号相配对,就达成了唯一可读性
真值表和公式化简:
真值表肯定不陌生,主要是公式化简有一些要记住:
若命题在某情况下为真,则为可满足式,否则为矛盾式,一直可满足,则为永真式
关于等价:
合取析取范式
补:任意一个简单合取式都是析取范式,同理。。。
全称量词
终于写完了,等下就去考试23333. 方法可以说成函数