概率论期末复习

概率论期末复习要点

说明:此复习要点主要为关于各种疑难公式的推导过程,如果希望速成请直接背公式

随机变量的数字特征

  1. D ( X ± Y ) = D ( X ) + D ( Y ) D(X\pm Y)=D(X)+D(Y) D(X±Y)=D(X)+D(Y)

    D ( X ± Y ) = E ( [ ( X ± Y ) − E ( X ± Y ) ] 2 ) = E ( [   ( X − E ( X ) )   ±   ( Y − E ( Y )   )   ] 2 ) = E [ ( X − E ( X ) ) 2 ] + E [ ( Y − E ( Y ) ) 2 ] ± E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] = D ( X ) + D ( Y ) ± E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] \begin{aligned} D(X\pm Y)&=E([(X\pm Y)-E(X\pm Y)]^2)\\ &=E([\ (X - E(X))\ \pm\ (Y- E(Y)\ )\ ]^2)\\ &=E[(X-E(X))^2]+E[(Y-E(Y))^2]\pm E[(X-E(X))(Y-E(Y))]\\ &=D(X)+D(Y)\pm E[(X-E(X))(Y-E(Y))] \end{aligned} D(X±Y)=E([(X±Y)E(X±Y)]2)=E([ (XE(X)) ± (YE(Y) ) ]2)=E[(XE(X))2]+E[(YE(Y))2]±E[(XE(X))(YE(Y))]=D(X)+D(Y)±E[(XE(X))(YE(Y))]

  2. 协方差 c o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) cov(X,Y)=E(XY)-E(X)E(Y) cov(X,Y)=E(XY)E(X)E(Y)

    c o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } = E [ X Y − X E ( Y ) − Y E ( X ) + E ( X ) E ( Y ) ] = E ( X Y ) − E ( X ) E ( Y ) − E ( Y ) E ( X ) + E ( X ) E ( Y ) = E ( X Y ) − E ( X ) E ( Y ) \begin{aligned} cov(X,Y)&=E\{[X-E(X)][Y-E(Y)]\}\\ &=E[XY-XE(Y)-YE(X)+E(X)E(Y)]\\ &=E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y)\\ &=E(XY)-E(X)E(Y) \end{aligned} cov(X,Y)=E{[XE(X)][YE(Y)]}=E[XYXE(Y)YE(X)+E(X)E(Y)]=E(XY)E(X)E(Y)E(Y)E(X)+E(X)E(Y)=E(XY)E(X)E(Y)

  3. 相关系数 ρ ( X , Y ) = c o v ( X , Y ) D ( X ) D ( Y ) \rho(X,Y)=\frac{cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρ(X,Y)=D(X) D(Y) cov(X,Y)

由于协方差的值会受到X和Y的量纲大小影响,为了克服这个缺点,我们引入相关系数的概念

定义1

设(X,Y)为一个二位随机变量,若cov(X,Y)存在,且 D ( X ) > 0 , D ( Y ) > 0 D(X)>0,D(Y)>0 D(X)>0,D(Y)>0,则称 c o v ( X , Y ) D ( X ) D ( Y ) \frac{cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} D(X) D(Y) cov(X,Y)为X与Y的相关系数,记作 ρ ( X , Y ) 或 ρ x y \rho(X,Y)或\rho_{xy} ρ(X,Y)ρxy
ρ ( X , Y ) = c o v ( X , Y ) D ( X ) D ( Y ) \rho(X,Y)=\frac{cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρ(X,Y)=D(X) D(Y) cov(X,Y)
相关系数 ρ ( X , Y ) \rho(X,Y) ρ(X,Y)是一个无量纲的量,具有如下特性:

  1. ∣ ρ ( X , Y ) ∣ ≤ 1 |\rho(X,Y)|\le1 ρ(X,Y)1
  2. ∣ ρ ( X , Y ) ∣ = 1 |\rho(X,Y)|=1 ρ(X,Y)=1的充要条件是 P ( Y = a X + b ) = 1 P(Y=aX+b)=1 P(Y=aX+b)=1,其中a,b为常数

以上的性质说明相关系数 ρ x y \rho_{xy} ρxy表示的是X,Y取值之间的线性关系的密切程度

∣ ρ ( X , Y ) ∣ = 1 |\rho(X,Y)|=1 ρ(X,Y)=1时,X与Y的取值也许会有 Y ≠ a X + b Y\neq aX+b Y=aX+b的情况发生,不过这种情况发生的概率为0,可以不计(就好比连续函数可能取到某个值,但是取到其的概率为0)

定义2

若X与Y的相关系数 ρ ( X , Y ) = 0 \rho(X,Y)=0 ρ(X,Y)=0,则称X与Y不相关

(X,Y如果相互独立那么X,Y一定不相关,但是X,Y不相关不一定相互独立)

例题1:

设随机变量 X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1), Y = X 2 Y=X^2 Y=X2,则 ρ ( X , Y ) = ? \rho(X,Y)=? ρ(X,Y)=?
∵ X ∼ N ( 0 , 1 ) ∴ E ( X 2 ) = D ( X ) + [ E ( X ) ] 2 = 1 ∴ E ( Y ) = E ( X 2 ) = 1 ∵ E ( X ) = 0 , E ( Y ) = 0 , E ( X Y ) = 0 ∴ c o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) = 0 − 0 = 0 ∴ ρ ( X , Y ) = c o v ( X , Y ) D ( X ) D ( Y ) = 0 \begin{aligned} &\because X\sim N(0,1)\\ &\therefore E(X^2)=D(X)+[E(X)]^2 =1\\ &\therefore E(Y)=E(X^2)=1\\ &\because E(X)=0,E(Y)=0,E(XY)=0\\ &\therefore cov(X,Y)=E(XY)-E(X)E(Y)=0-0=0\\ &\therefore \rho(X,Y)=\frac{cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}=0 \end{aligned} XN(0,1)E(X2)=D(X)+[E(X)]2=1E(Y)=E(X2)=1E(X)=0,E(Y)=0,E(XY)=0cov(X,Y)=E(XY)E(X)E(Y)=00=0ρ(X,Y)=D(X) D(Y) cov(X,Y)=0
所以为什么,E(XY)=0呢?

这里我们要知道,这道题中 E ( X Y ) = E ( X 3 ) E(XY)=E(X^3) E(XY)=E(X3)

于是,我们不妨开始递推 E ( X k ) E(X^k) E(Xk)的一般规律:
E ( X k ) = ∫ − ∞ + ∞ x k 1 2 π e − x 2 2 d x = ∫ − ∞ + ∞ 1 k + 1 1 2 π e − x 2 2 d x k + 1 = 1 2 π ( k + 1 ) x k + 1 e − x 2 2 ∣ − ∞ + ∞ + 1 ( k + 1 ) ∫ − ∞ + ∞ 1 2 π x k + 2 e − x 2 2 d x = 1 2 π ( k + 1 ) x k + 1 ∣ − ∞ + ∞ + 1 k + 1 E ( X k + 2 ) = 0 + 1 k + 1 E ( X k + 2 ) \begin{aligned} E(X^k)&= \int_{-\infty}^{+\infty}x^k\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx\\ &=\int_{-\infty}^{+\infty} \frac{1}{k+1} \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx^{k+1}\\ &=\frac{1}{\sqrt{2\pi}(k+1)}x^{k+1}e^{-\frac{x^2}{2}}|_{-\infty}^{+\infty}+\frac{1}{(k+1)}\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}x^{k+2}e^{-\frac{x^2}{2}}dx\\ &=\frac{1}{\sqrt{2\pi}(k+1)}x^{k+1}|_{-\infty}^{+\infty}+\frac{1}{k+1}E(X^{k+2})\\ &=0+\frac{1}{k+1}E(X^{k+2})\\ \end{aligned} E(Xk)=+xk2π 1e2x2dx=+k+112π 1e2x2dxk+1=2π (k+1)1xk+1e2x2++(k+1)1+2π 1xk+2e2x2dx=2π (k+1)1xk+1++k+11E(Xk+2)=0+k+11E(Xk+2)
由此可得公式如下
E ( X k ) = { ( k − 1 ) E ( X k − 2 ) , k   M O D   2 = 0 1 , k = 2 0 , k   M O D   2 = 1 E(X^k)=\begin{cases} \begin{aligned} (k-1)E(X^{k-2})&,k\ MOD \ 2=0\\ 1&,k=2\\ 0&,k\ MOD\ 2=1 \end{aligned} \end{cases} E(Xk)=(k1)E(Xk2)10,k MOD 2=0,k=2,k MOD 2=1

  1. E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=\int_{-\infty}^{+\infty}xf(x)dx E(X)=+xf(x)dx

已知X的密度函数为 p ( x ) = { 0.5 x ∈ [ 0 , 2 ] 0 其 他 p(x)=\begin{cases}\begin{aligned}&0.5&x\in[0,2]\\ &0&其他\end{aligned}\end{cases} p(x)={0.50x[0,2],则X的数学期望 E ( X ) = ? E(X)=? E(X)=?
E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x = ∫ 0 2 x f ( x ) d x = ∫ 0 2 x 2 d x = x 2 4 ∣ 0 2 = 1 \begin{aligned} E(X)&=\int_{-\infty}^{+\infty}xf(x)dx=\int_{0}^{2}xf(x)dx\\ &=\int_{0}^{2}\frac{x}{2}dx=\frac{x^2}{4}|_{0}^{2}=1 \end{aligned} E(X)=+xf(x)dx=02xf(x)dx=022xdx=4x202=1

  1. E ( C ) = C E(C)=C E(C)=C

  2. E ( X Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f ( x , y ) d x d y E(XY)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xyf(x,y)dxdy E(XY)=++xyf(x,y)dxdy

例题:设随机变量(X,Y)具有概率密度, f ( x , y ) = { 24 x y 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , x + y ≤ 1 0 其 他 f(x,y)=\begin{cases}\begin{aligned}&24xy&0\leq x\leq1,0\leq y\leq1,x+y\leq1\\&0&其他\end{aligned}\end{cases} f(x,y)={24xy00x1,0y1,x+y1

E ( X ) , E ( Y ) , E ( X Y ) E(X),E(Y),E(XY) E(X),E(Y),E(XY)

  1. E ( X ) E(X) E(X)
    E ( X ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ 24 x 2 y d x d y = ∫ 0 1 24 x 2 d x ∫ 0 1 − x y d y = ∫ 0 1 ( 1 − x ) 2 2 24 x 2 d x = ∫ 0 1 12 x 4 − 24 x 3 + 12 x 2 d x = 12 5 x 5 − 6 x 4 + 4 x 3 ∣ 0 1 = 0.4 \begin{aligned} E(X)&=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}24x^2ydxdy\\ &=\int_{0}^{1}24x^2dx\int_{0}^{1-x}ydy\\ &=\int_{0}^{1}\frac{(1-x)^2}{2}24x^2dx\\ &=\int_{0}^{1}12x^4-24x^3+12x^2dx\\ &=\frac{12}{5}x^5-6x^4+4x^3|_0^1\\ &=0.4 \end{aligned} E(X)=++24x2ydxdy=0124x2dx01xydy=012(1x)224x2dx=0112x424x3+12x2dx=512x56x4+4x301=0.4

  2. E ( Y ) E(Y) E(Y)
    E ( Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ 24 x y 2 d x d y = ∫ 0 1 24 y 2 d y ∫ 0 1 − y x d x = ∫ 0 1 ( 1 − y ) 2 2 24 y 2 d x = ∫ 0 1 12 y 4 − 24 y 3 + 12 y 2 d y = 12 5 y 5 − 6 y 4 + 4 y 3 ∣ 0 1 = 0.4 \begin{aligned} E(Y)&=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}24xy^2dxdy\\ &=\int_{0}^{1}24y^2dy\int_{0}^{1-y}xdx\\ &=\int_{0}^{1}\frac{(1-y)^2}{2}24y^2dx\\ &=\int_{0}^{1}12y^4-24y^3+12y^2dy\\ &=\frac{12}{5}y^5-6y^4+4y^3|_0^1\\ &=0.4 \end{aligned} E(Y)=++24xy2dxdy=0124y2dy01yxdx=012(1y)224y2dx=0112y424y3+12y2dy=512y56y4+4y301=0.4
    (其实对称性可以直接求)

  3. E ( X Y ) E(XY) E(XY)
    E ( X Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ 24 x 2 y 2 d x d y = ∫ 0 1 24 y 2 d y ∫ 0 1 − y x 2 d x = ∫ 0 1 ( 1 − y ) 3 3 24 y 2 d x = 8 ∫ 0 1 ( − y 5 + 3 y 4 − 3 y 3 + y 2 ) d y = 1 60 \begin{aligned} E(XY)&=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}24x^2y^2dxdy\\ &=\int_{0}^{1}24y^2dy\int_{0}^{1-y}x^2dx\\ &=\int_{0}^{1}\frac{(1-y)^3}{3}24y^2dx\\ &=8\int_{0}^{1}(-y^5+3y^4-3y^3+y^2)dy\\ &=\frac{1}{60} \end{aligned} E(XY)=++24x2y2dxdy=0124y2dy01yx2dx=013(1y)324y2dx=801(y5+3y43y3+y2)dy=601

大数定理和中心极限定理

切比雪夫不等式

定理1

设随机变量 X X X的数学期望 E ( X ) E(X) E(X)与方差 D ( X ) D(X) D(X)都存在,则对任意的常数 ϵ > 0 \epsilon>0 ϵ>0,都有:
P ( ∣ X − E ( X ) ∣ ≥ ϵ ) ≤ D ( X ) ϵ 2 P(|X-E(X)|\geq \epsilon)\leq\frac{D(X)}{\epsilon^2} P(XE(X)ϵ)ϵ2D(X)
含义:

对于任意一个分布,其随机变量 X X X落在其期望 E ( X ) E(X) E(X)的长度为 ϵ \epsilon ϵ的邻域的范围外的概率小于一定的值

例题:已知正常成人男性的血液中,单位白细胞数平均是 7300 个 / m l 7300个/ml 7300/ml,均方差是700,利用切比雪夫不等式估计单位白细胞数在5200~9400之间的概率

**解:**设 X X X表示成年男性血液中白细胞数,由题知:

E ( X ) = 7300 E(X)=7300 E(X)=7300 D ( X ) = 70 0 2 D(X)=700^2 D(X)=7002,由切比雪夫不等式得:
P ( 5200 < X < 9400 ) = P ( − 2100 < X − 7300 < 2100 ) = P ( ∣ X − 7300 ∣ < 2100 ) = 1 − P ( ∣ X − 7300 ∣ ≥ 2100 ) ≥ 1 − D ( X ) ϵ 2 = 1 − 70 0 2 210 0 2 = 8 9 \begin{aligned} P(5200<X<9400)&=P(-2100<X-7300<2100)\\ &=P(|X-7300|<2100)\\ &=1-P(|X-7300|\geq2100)\geq1-\frac{D(X)}{\epsilon^2}\\ &=1-\frac{700^2}{2100^2}=\frac{8}{9} \end{aligned} P(5200<X<9400)=P(2100<X7300<2100)=P(X7300<2100)=1P(X73002100)1ϵ2D(X)=1210027002=98
由此可知,切比雪夫不等式在计算连续随机变量的区间概率是很方便的

大数定理

X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是相互独立的,服从同一分布的随机变量序列,且具有数学期望 E ( X k ) = μ ( k = 1 , 2 , . . . , n ) E(X_k)=\mu(k=1,2,...,n) E(Xk)=μ(k=1,2,...,n),则对于任意 ϵ > 0 \epsilon>0 ϵ>0,有:
lim ⁡ n − > ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ϵ } = 1 \lim_{n->\infty}P\{|\frac{1}{n}\sum_{k=1}^nX_k-\mu|<\epsilon\}=1 n>limP{n1k=1nXkμ<ϵ}=1

含义:

当样本空间足够大的时候,样本的期望就等于总体的期望

证明:
E ( 1 n ∑ k = 1 n X k ) = 1 n ∑ k = 1 n E ( X k ) = μ D ( 1 n ∑ k = 1 n X k ) = 1 n 2 ∑ k = 1 n D ( X k ) = σ 2 n 由 切 比 雪 夫 不 等 式 可 知 : P ( ∣ 1 n ∑ k = 1 n X k − μ ∣ ≥ ϵ ) ≤ D ( x ) ϵ 2 ∴ 1 − D ( X ) ϵ 2 ≤ P ( ∣ 1 n ∑ k = 1 n X k − μ ∣ < ϵ ) ≤ 1 即 1 − σ 2 n ϵ 2 ≤ P ( ∣ 1 n ∑ k = 1 n X k − μ ∣ < ϵ ) ≤ 1 ∴ 1 ≤ lim ⁡ n − > ∞ P ( ∣ 1 n ∑ k = 1 n X k − μ ∣ < ϵ ) ≤ 1 ∴ lim ⁡ n − > ∞ P ( ∣ 1 n ∑ k = 1 n X k − μ ∣ < ϵ ) = 1 \begin{aligned} E(\frac{1}{n}\sum_{k=1}^nX_k)&=\frac{1}{n}\sum_{k=1}^nE(X_k)=\mu\\ D(\frac{1}{n}\sum_{k=1}^nX_k)&=\frac{1}{n^2}\sum_{k=1}^nD(X_k)=\frac{\sigma^2}{n}\\ 由切比雪夫不等&式可知:\\ P(|\frac{1}{n}\sum_{k=1}^nX_k&-\mu|\geq\epsilon)\leq\frac{D(x)}{\epsilon^2}\\ \therefore 1-\frac{D(X)}{\epsilon^2}\leq & P(|\frac{1}{n}\sum_{k=1}^nX_k-\mu|<\epsilon)\leq1\\ 即1-\frac{\sigma^2}{n\epsilon^2}\leq P&(|\frac{1}{n}\sum_{k=1}^nX_k-\mu|<\epsilon)\leq1\\ \therefore1\leq \lim_{n->\infty}P(|&\frac{1}{n}\sum_{k=1}^nX_k-\mu|<\epsilon)\leq1\\ \therefore\lim_{n->\infty}P(|\frac{1}{n}\sum_{k=1}^n&X_k-\mu|<\epsilon)=1 \end{aligned} E(n1k=1nXk)D(n1k=1nXk)P(n1k=1nXk1ϵ2D(X)1nϵ2σ2P1n>limP(n>limP(n1k=1n=n1k=1nE(Xk)=μ=n21k=1nD(Xk)=nσ2:μϵ)ϵ2D(x)P(n1k=1nXkμ<ϵ)1(n1k=1nXkμ<ϵ)1n1k=1nXkμ<ϵ)1Xkμ<ϵ)=1

抽样分布

  1. 样本均值: X ˉ = 1 n ∑ i = 1 n X i \bar{X}=\frac{1}{n}\sum_{i=1}^nX_i Xˉ=n1i=1nXi

  2. 未修正的样本方差: S 0 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 S_{0}^2=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2 S02=n1i=1n(XiXˉ)2

  3. 修正的样本方差: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2 S2=n11i=1n(XiXˉ)2

为社么要修正?

可以观察第五个式子,如果我们没有修正,那么未修正的样本方差我们会发现不等于 σ 2 \sigma^2 σ2,那么为了能无偏估计,我们只能使用修正后的样本方差,来将结果“纠正”

  1. E ( X ˉ ) = μ E(\bar{X})=\mu E(Xˉ)=μ

推导:
E ( X ˉ ) = E ( 1 n ∑ i = 1 n X i ) = 1 n ∑ i = 1 n E ( X i ) = 1 n n μ = μ E(\bar{X})=E(\frac{1}{n}\sum_{i=1}^{n}X_i)=\frac{1}{n}\sum_{i=1}^nE(X_i)=\frac{1}{n}n\mu=\mu E(Xˉ)=E(n1i=1nXi)=n1i=1nE(Xi)=n1nμ=μ

  1. D ( X ˉ ) = σ 2 n D(\bar{X})=\frac{\sigma^2}{n} D(Xˉ)=nσ2

推导:
D ( X ˉ ) = D ( 1 n ∑ i = 1 n X i ) = 1 n 2 ∑ i = 1 n D ( X i ) = 1 n 2 n σ 2 = σ 2 n D(\bar{X})=D(\frac{1}{n}\sum_{i=1}^{n}X_i)=\frac{1}{n^2}\sum_{i=1}^{n}D(X_i)=\frac{1}{n^2}n\sigma^2=\frac{\sigma^2}{n} D(Xˉ)=D(n1i=1nXi)=n21i=1nD(Xi)=n21nσ2=nσ2

  1. E ( S 2 ) = σ 2 E(S^2)=\sigma^2 E(S2)=σ2

推导:
E ( S 2 ) = E ( 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 ) = 1 n − 1 E ( ∑ i = 1 n [ ( X i − μ ) − ( X ˉ − μ ) ] 2 ) = 1 n − 1 E [ ∑ i = 1 n ( X i − μ ) 2 − 2 ∑ i = 1 n ( X i − μ ) ( X ˉ − μ ) + ∑ i = 1 n ( X ˉ − μ ) 2 ] = 1 n − 1 { E [ ∑ i = 1 n ( X i − μ ) 2 ] − 2 E [ ∑ i = 1 n ( X i − μ ) ( X ˉ − μ ) ] + E [ ∑ i = 1 n ( X ˉ − μ ) 2 ] } = 1 n − 1 [ n σ 2 − 2 n E ( X ˉ − μ ) 2 + n E ( X ˉ − μ ) 2 ] = 1 n − 1 [ n σ 2 − n E ( X ˉ − μ ) 2 ] = 1 n − 1 [ n σ 2 − n D ( X ˉ ) ] = 1 n − 1 [ n σ 2 − n σ 2 n ] = σ 2 \begin{aligned} E(S^2)&=E(\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2)\\ &=\frac{1}{n-1}E(\sum_{i=1}^n[(X_i-\mu)-(\bar{X}-\mu)]^2)\\ &=\frac{1}{n-1}E[\sum_{i=1}^n(X_i-\mu)^2-2\sum_{i=1}^n(X_i-\mu)(\bar{X}-\mu)+\sum_{i=1}^n(\bar{X}-\mu)^2]\\ &=\frac{1}{n-1}\{E[\sum_{i=1}^n(X_i-\mu)^2]-2E[\sum_{i=1}^n(X_i-\mu)(\bar{X}-\mu)]+E[\sum_{i=1}^n(\bar{X}-\mu)^2]\}\\ &=\frac{1}{n-1}[n\sigma^2-2nE(\bar{X}-\mu)^2+nE(\bar{X}-\mu)^2]\\ &=\frac{1}{n-1}[n\sigma^2-nE(\bar{X}-\mu)^2]\\ &=\frac{1}{n-1}[n\sigma^2-nD(\bar{X})]\\ &=\frac{1}{n-1}[n\sigma^2-n\frac{\sigma^2}{n}]\\ &=\sigma^2 \end{aligned} E(S2)=E(n11i=1n(XiXˉ)2)=n11E(i=1n[(Xiμ)(Xˉμ)]2)=n11E[i=1n(Xiμ)22i=1n(Xiμ)(Xˉμ)+i=1n(Xˉμ)2]=n11{E[i=1n(Xiμ)2]2E[i=1n(Xiμ)(Xˉμ)]+E[i=1n(Xˉμ)2]}=n11[nσ22nE(Xˉμ)2+nE(Xˉμ)2]=n11[nσ2nE(Xˉμ)2]=n11[nσ2nD(Xˉ)]=n11[nσ2nnσ2]=σ2

练习题:

样本 ( X 1 , . . . , X n ) (X_1,...,X_n) (X1,...,Xn)取自标准正态总体 N ( 0 , 1 ) N(0,1) N(0,1), X ˉ , S \bar{X},S Xˉ,S分别为样本均值及样本标准差,则 n X ˉ ∼ ? n\bar{X}\sim? nXˉ?

∵ E ( n X ˉ ) = E ( ∑ i = 1 n X i ) = ∑ i = 1 n E ( X i ) = n μ = 0 D ( n X ˉ ) = n 2 D ( X ˉ ) = n 2 σ 2 n = n σ 2 = n ∴ n X ˉ ∼ N ( 0 , n ) \begin{aligned} \because&E(n\bar{X})=E(\sum_{i=1}^nX_i)=\sum_{i=1}^nE(X_i)=n\mu=0\\ &D(n\bar{X})=n^2D(\bar{X})=n^2\frac{\sigma^2}{n}=n\sigma^2=n\\ \therefore &n\bar{X}\sim N(0,n) \end{aligned} E(nXˉ)=E(i=1nXi)=i=1nE(Xi)=nμ=0D(nXˉ)=n2D(Xˉ)=n2nσ2=nσ2=nnXˉN(0,n)

  1. 卡方分布

定义:

设样本 ( X 1 , X 2 , . . . , X n − 1 , X n ) (X_1,X_2,...,X_{n-1},X_n) (X1,X2,...,Xn1,Xn) N ( 0 , 1 ) N(0,1) N(0,1),即标准正态分布的样本,则称随机变量 X 2 = ∑ i = 1 n X i 2 X^2=\sum_{i=1}^nX_i^2 X2=i=1nXi2所服从的分布是自由度为n的 χ 2 \chi^2 χ2分布,记为 X 2 ∼ χ 2 ( n ) X^2\sim\chi^2(n) X2χ2(n)

性质:

(1)当 X 2 ∼ χ 2 ( n ) X^2\sim\chi^2(n) X2χ2(n)时, E ( X 2 ) = n , D ( X 2 ) = 2 n E(X^2)=n,D(X^2)=2n E(X2)=n,D(X2)=2n
E ( X 2 ) = E ( ∑ i = 1 n X i 2 ) = ∑ i = 1 n E ( X i 2 ) = ∑ i = 1 n { D ( X i ) + [ E ( X i ) ] 2 } = ∑ i = 1 n 1 = n \begin{aligned} E(X^2)&=E(\sum_{i=1}^nX_i^2)=\sum_{i=1}^nE(X_i^2)\\ &=\sum_{i=1}^n\{D(X_i)+[E(X_i)]^2\}\\ &=\sum_{i=1}^n1=n \end{aligned} E(X2)=E(i=1nXi2)=i=1nE(Xi2)=i=1n{D(Xi)+[E(Xi)]2}=i=1n1=n

D ( X 2 ) = D ( ∑ i = 1 n X i 2 ) = ∑ i = 1 n D ( X i 2 ) = ∑ i = 1 n [ E ( X i 4 ) − E 2 ( X i 2 ) ] = ∑ i = 1 n [ E ( X i 4 ) − 1 ] \begin{aligned} D(X^2)&=D(\sum_{i=1}^nX_i^2)=\sum_{i=1}^nD(X_i^2)\\ &=\sum_{i=1}^n[E(X_i^4)-E^2(X_i^2)]\\ &=\sum_{i=1}^n[E(X_i^4)-1]\\ \end{aligned} D(X2)=D(i=1nXi2)=i=1nD(Xi2)=i=1n[E(Xi4)E2(Xi2)]=i=1n[E(Xi4)1]

公式6可知, E ( X i 4 ) = 3 E ( X i 2 ) = 3 E(X_i^4)=3E(X_i^2)=3 E(Xi4)=3E(Xi2)=3
∴ D ( X 2 ) = 2 n \therefore D(X^2)=2n D(X2)=2n
(2) χ 2 \chi^2 χ2分布的可加性:

X 1 2 X_1^2 X12 X 2 2 X_2^2 X22相互独立,且 X 1 2 ∼ χ 2 ( m ) , X 2 2 ∼ χ 2 ( n ) X_1^2\sim\chi^2(m),X_2^2\sim\chi^2(n) X12χ2(m),X22χ2(n),则
X 1 2 + X 2 2 ∼ χ 2 ( m + n ) X_1^2+X_2^2\sim\chi^2(m+n) X12+X22χ2(m+n)
(3)设 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)为正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的样本,则
X 2 = 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) X^2=\frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\mu)^2\sim\chi^2(n) X2=σ21i=1n(Xiμ)2χ2(n)
其实这个不就是简单的标准化吗,标准化以后就是标准正态分布了,那么当然服从卡方分布了

参数估计

参数估计就是,使用样本计算得到的参数来估计总体的参数(均值、方差。。。)

  1. 矩估计的定理:

    假设 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)是取自总体 X X X的一个样本, E ( X ) = μ , D ( X ) = σ 2 E(X)=\mu,D(X)=\sigma^2 E(X)=μ,D(X)=σ2

    (1) X ˉ \bar{X} Xˉ是未知参数 μ \mu μ的矩估计

    (2)当 μ \mu μ未知时, S n 2 S_n^2 Sn2是未知参数 σ 2 \sigma^2 σ2的矩估计, S n S_n Sn是未知参数 σ \sigma σ的矩估计

    (3)当 μ \mu μ已知时, 1 n ∑ i = 1 n X i 2 − μ 2 \frac{1}{n}\sum_{i=1}^nX_i^2-\mu^2 n1i=1nXi2μ2是未知参数 σ 2 \sigma^2 σ2的矩估计, 1 n ∑ i = 1 n X i 2 − μ 2 \sqrt{\frac{1}{n}\sum_{i=1}^nX_i^2-\mu^2} n1i=1nXi2μ2 是未知参数 σ \sigma σ的矩估计

    • 例题1

      设总体 X X X [ a , b ] [a,b] [a,b]上服从均匀分布,a,b未知. X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是来自 X X X的样本,试求 a , b a,b a,b的矩估计量

      分析:要求矩估计量,其实就是让我们找出未知量与矩的关系,然后通过这些关系,用已知的矩估计量来代替关系式中的矩,以求得未知量的矩估计

      解 : 解: :
      μ 1 = E ( X ) = a + b 2 μ 2 = E ( X 2 ) = D ( X ) + [ E ( X ) ] 2 = ( b − a ) 2 12 + μ 1 2 ∴ { a + b = 2 μ 1 b − a = 12 ( μ 2 − μ 1 2 ) ∴ { a = μ 1 − 3 ( μ 2 − μ 1 2 ) b = μ 1 + 3 ( μ 2 − μ 1 2 ) 使 用 A 1 = X ˉ 代 替 μ 1 , 使 用 A 2 = f v o 6 y 1 n ∑ i = 1 n X i 2 代 替 μ 2 a ^ = X ˉ − 3 ( 1 n ∑ i = 1 n X i 2 − X ˉ 2 ) b ^ = X ˉ + 3 ( 1 n ∑ i = 1 n X i 2 − X ˉ 2 ) 其 中 1 n ∑ i = 1 n X i 2 − X ˉ 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 ∴ a ^ = X ˉ − 3 ( 1 n ∑ i = 1 n ( X i − X ˉ ) 2 ) b ^ = X ˉ + 3 ( 1 n ∑ i = 1 n ( X i − X ˉ ) 2 ) \begin{aligned} &\mu_1=E(X)=\frac{a+b}{2}\\ &\mu_2=E(X^2)=D(X)+[E(X)]^2=\frac{(b-a)^2}{12}+\mu_1^2\\ \therefore&\begin{cases} a+b=2\mu_1\\ b-a=\sqrt{12(\mu_2-\mu_1^2)} \end{cases}\\ \therefore&\begin{cases} a=\mu_1-\sqrt{3(\mu_2-\mu_1^2)}\\ b=\mu_1+\sqrt{3(\mu_2-\mu_1^2)} \end{cases}\\ &使用A_1=\bar{X}代替\mu_1,使用A_2=fvo6y \frac{1}{n}\sum_{i=1}^nX_i^2代替\mu_2\\ &\hat{a}=\bar{X}-\sqrt{3(\frac{1}{n}\sum_{i=1}^nX_i^2-\bar{X}^2)}\\ &\hat{b}=\bar{X}+\sqrt{3(\frac{1}{n}\sum_{i=1}^nX_i^2-\bar{X}^2)}\\ &其中\frac{1}{n}\sum_{i=1}^nX_i^2-\bar{X}^2=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2\\ \therefore&\hat{a}=\bar{X}-\sqrt{3(\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2)}\\ &\hat{b}=\bar{X}+\sqrt{3(\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2)}\\ \end{aligned} μ1=E(X)=2a+bμ2=E(X2)=D(X)+[E(X)]2=12(ba)2+μ12{a+b=2μ1ba=12(μ2μ12) {a=μ13(μ2μ12) b=μ1+3(μ2μ12) 使A1=Xˉμ1,使A2=fvo6yn1i=1nXi2μ2a^=Xˉ3(n1i=1nXi2Xˉ2) b^=Xˉ+3(n1i=1nXi2Xˉ2) n1i=1nXi2Xˉ2=n1i=1n(XiXˉ)2a^=Xˉ3(n1i=1n(XiXˉ)2) b^=Xˉ+3(n1i=1n(XiXˉ)2)

      这里列出$\frac{1}{n}\sum_{i=1}nX_i2-\bar{X}2=\frac{1}{n}\sum_{i=1}n(X_i-\bar{X})^2\$的证明
      1 n ∑ i = 1 n ( X i − X ˉ ) 2 = 1 n ∑ i = 1 n ( X i 2 − 2 X i X ˉ + X ˉ 2 ) = 1 n ∑ i = 1 n ( X i 2 ) − 2 1 n ∑ i = 1 n X i X ˉ + 1 n ∑ i = 1 n X ˉ 2 = 1 n ∑ i = 1 n X i 2 − 2 X ˉ 2 + X ˉ 2 = 1 n ∑ i = 1 n ( X i 2 − X ˉ 2 ) \begin{aligned} \frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2&=\frac{1}{n}\sum_{i=1}^n(X_i^2-2X_i\bar{X}+\bar{X}^2)\\ &=\frac{1}{n}\sum_{i=1}^n(X_i^2)-2\frac{1}{n}\sum_{i=1}^nX_i\bar{X}+\frac{1}{n}\sum_{i=1}^n\bar{X}^2\\ &=\frac{1}{n}\sum_{i=1}^nX_i^2-2\bar{X}^2+\bar{X}^2\\ &=\frac{1}{n}\sum_{i=1}^n(X_i^2-\bar{X}^2) \end{aligned} n1i=1n(XiXˉ)2=n1i=1n(Xi22XiXˉ+Xˉ2)=n1i=1n(Xi2)2n1i=1nXiXˉ+n1i=1nXˉ2=n1i=1nXi22Xˉ2+Xˉ2=n1i=1n(Xi2Xˉ2)

  2. θ ^ \hat{\theta} θ^是未知参数 θ \theta θ的一个估计量,若 E ( θ ^ ) = θ E(\hat{\theta})=\theta E(θ^)=θ,则称 θ ^ \hat{\theta} θ^为参数 θ \theta θ的一个无偏估计量

  3. 求最好值的一般方法:

    先求每个估计量的期望,如果期望与总体的期望不一样就 p a s s pass pass

    再求每个估计量的方差,方差最小的那个最好

  4. 求极大似然估计

    1. 将几个样本带入分布函数,将结果相乘
    2. 令相乘的结果为 L ( θ ) L(\theta) L(θ),对 L ( θ ) L(\theta) L(θ)取对数
    3. 对两边同时求导,求出取最大值时 θ 0 \theta_0 θ0的值
    4. 此时的 θ 0 \theta_0 θ0就是极大似然估计值
  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个老蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值