P2704 炮兵阵地 ( 状压dp

#include <bits/stdc++.h>
using namespace std;
using VI = vector<int>;
using PII = pair<int,int>;
using ll = long long;
using ull = unsigned long long;
int n,m;
int f[2][1024][1024];
int mp[110];
int v[2000][2000];
int stct[2000];
bool check(int x){

    if(!(x & x>>1) && !(x & x>>2)){
        return true;
    }
    return false;

}
int count_1(int x){
    int res = 0;
    while(x){
        res += (x&1);
        x = x >> 1;
    }
    return res;
}


int main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        int st = 0;
        for(int j=0;j<m;j++){
            char x;
            cin>>x;
            if(x == 'H') st |= 1 << j;
        }
        mp[i] = st;
    }
    vector<int>st;
    // 1 << m  -1    是前m-1位的所有情况
    for(int i=0;i<=(1<<m)-1;i++){
        if(check(i)) st.push_back(i),stct[i] = count_1(i);
    }
    VI head[1<<m];
    for(auto st1 :st){
        for(auto st2 : st){
            if( !(st1 & st2)){
                head[st1].push_back(st2);
            }
        }
    }
    memset(f,-0x3f,sizeof f);
    f[0][0][0] = 0;
    for(int i=1;i<=n;i++)
    {
        int cur = i & 1;
        int pre = (i-1) & 1;
        for(auto x : st)
        {
            if(!(x & mp[i]))
            {
                for(auto y : head[x])
                {
                    for(auto z :head[y])
                    {
                        if(!(z & x))
                        {
                            f[cur][x][y] = max(f[cur][x][y],f[pre][y][z] + stct[x]);
                        }
                    }
                }
            }
        }
    }
    ll res= 0;
    for(int x :st){
        for(int pre : head[x]){
            res = max(res,(ll)f[n&1][x][pre]);
        }
    }
    cout<<res;
}

感觉线性状压并不是难思考,而是对于状态的预处理是一个难点,

线形状压一般都是以层做转移状态(大概

对于这题

考虑到第i行能否转移区间与第 i - 1 行 和 第  i-2  行的同一列是否放了炮兵,

如果只假设了当前行的状态发f[i][j] 很难写出一个状态转移方程

如 f[i-1][k] 可以到 f[i][j]   f[i-2][j] 转移到f[i-1][k] 但f[i-2][j] 和 f[i][j] 很明显不太对头   

所以开三维f[i][j][k];

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值