NISQA学习资料汇总 - 深度学习模型预测语音质量和自然度

NISQA

NISQA简介

NISQA (Non-Intrusive Speech Quality Assessment)是一个用于语音质量和自然度评估的深度学习模型框架。它主要有以下几个功能:

  1. 语音质量预测:可以预测经过通信系统传输后的语音样本质量,包括总体质量、噪声、音色、不连续性和响度等维度。

  2. TTS自然度预测:可以预测语音合成或声音转换系统生成的合成语音的自然度。

  3. 模型训练/微调:支持训练新的语音质量预测模型,或在已有模型基础上进行微调。

  4. 大规模语音质量数据集:提供了包含14000多个语音样本的NISQA语料库,用于模型训练和评估。

NISQA模型架构

安装与使用

  1. 安装依赖:
conda env create -f env.yml
  1. 预测语音质量:
python run_predict.py --mode predict_file --pretrained_model weights/nisqa.tar --deg /path/to/wav/file.wav 
  1. 训练/微调模型:
python run_train.py --yaml config/finetune_nisqa.yaml
  1. 评估模型:
python run_evaluate.py

详细的安装和使用说明可以参考NISQA GitHub主页

数据集

NISQA Corpus是一个包含14000多个语音样本的大规模数据集,用于训练和评估语音质量预测模型。它包含:

  • 模拟失真样本(编解码器、丢包、背景噪声等)
  • 真实场景样本(手机通话、Zoom、Skype、WhatsApp等)
  • 每个样本都标注了总体质量、噪声、音色、不连续性和响度等维度的主观评分

数据集下载和详细说明请参考NISQA Corpus Wiki

相关论文

如果您在研究中使用了NISQA,请引用以下相关论文:

  1. NISQA模型: NISQA: A Deep CNN-Self-Attention Model for Multidimensional Speech Quality Prediction with Crowdsourced Datasets

  2. NISQA-TTS模型: Deep Learning Based Assessment of Synthetic Speech Naturalness

  3. 双端NISQA模型: Full-reference speech quality estimation with attentional Siamese neural networks

许可证

更多资源

NISQA为语音质量评估领域提供了强大的深度学习解决方案。希望本文汇总的学习资料能够帮助您更好地了解和使用NISQA。如果您对NISQA有任何问题,欢迎在GitHub上提issue讨论。


文章连接:www.dongaigc.com/a/nisqa-learning-materials-deep-learning-models
https://www.dongaigc.com/a/nisqa-learning-materials-deep-learning-models

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值