GARCH模型:金融波动率建模的利器

GARCH模型:金融波动率建模的利器

一、引言

1.1 研究背景

金融市场的波动性(Volatility)是风险管理、资产定价和投资决策的核心要素。GARCH(Generalized Autoregressive Conditional Heteroskedasticity,广义自回归条件异方差)模型作为捕捉这种波动性的重要工具,具有以下特点:

  1. 波动率聚集

    • 大波动往往后续大波动
    • 小波动倾向于跟随小波动
  2. 杠杆效应

    • 负向冲击对波动率的影响大于正向冲击
    • 收益率与波动率呈负相关
  3. 尖峰厚尾

    • 金融收益率分布具有较高的峰度
    • 尾部概率大于正态分布

1.2 理论基础

GARCH模型的基本形式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值