企业数据可视化实现2020用户留存分析

本文通过帆软FineBI展示了企业数据可视化在用户留存分析的应用,包括整体客户留存一览表、2020留存走势折线图、活跃用户UV三周留存率条形图和区域活跃用户UV占比环形图,揭示了用户留存率的变化趋势和关键指标,为企业提供精细化运营策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 整体客户留存一览明细表

1.1 图表制作

1.2 总结归纳

2 2020留存走势折线图

2.1 图表制作

2.2 总结归纳

3 活跃用户UV三周留存率条形图

3.1 图表制作

3.2 总结归纳

4 区域活跃用户UV占比环形图

4.1 图表制作

4.2 总结归纳

总结


留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考查看进行初始行为后的用户中, 经过一段时间后仍然存在客户行为(如登录、消费)。

留存不仅是个可以反映客户粘性的指标,更多地反映产品对用户的吸引力。

图表分析

数据源

推荐图表

整体客户留存一览

用户留存率.excel

明细表

2020留存走势

折线图

活跃用户UV三周留存率

条形图

区域活跃用户UV占比

环形图

1 整体客户留存一览明细表

1.1 图表制作

①选择创建组件,导入数据源“用户留存数据.excel”,图表类型选择“分组表”。

②将维度“最早激活日期(年月)”拖拽至维度,将指标“当日留存率(聚合)”,“第一周内留存率(聚合)”,“第二周内留存率(聚合)”,“第三周内留存率(聚合)”拖拽至指标。如下图所示:

1.2 总结归纳

最后生成的企业数据可视化分组表如下图所示:

表中计算了用户从激活某产品开始,在当日、一周内、两周内、三周内进行登录使用等操作的占总登录人数的比率。

当日留

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值