242. 有效的字母异位词
给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。
示例 1: 输入: s = “anagram”, t = “nagaram” 输出: true
示例 2: 输入: s = “rat”, t = “car” 输出: false
说明: 你可以假设字符串只包含小写字母。
思路
哈希映射:数组
- 首先判断两个字符串长度是否相等,不相等则直接返回false
- 若相等,初始化哈希数组
int hash[26]={0};
- 遍历字符串s,对应位置的值++
- 遍历字符串t,对应位置的值–
- 遍历哈希表,若哈希表存在不为0的数值,返回false,否则返回true
代码
class Solution {
public:
bool isAnagram(string s, string t) {
int hash[26]={0};
for(int i=0;i<s.size();i++)
hash[s[i]-'a']++;
for(int i=0;i<t.size();i++)
hash[t[i]-'a']--;
for(int i=0;i<26;i++)
if(hash[i]!=0) return false;
return true;
}
};
- 时间复杂度
O(n)
- 空间复杂度
O(S)
,其中S为字符集大小,S=26
随着n的变化,所需开辟的内存空间并不会随着n的变化而变化,即此算法空间复杂度为一个常量
O(1)
349. 两个数组的交集
题意:给定两个数组,编写一个函数来计算它们的交集。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MAgBOGK9-1669034108225)(https://cdn.nlark.com/yuque/0/2022/png/2495891/1669019962844-6ca0f782-299e-4597-9d1a-f3758e976a5c.png)]
说明: 输出结果中的每个元素一定是唯一的。 我们可以不考虑输出结果的顺序。
思路
1. 数组
2. set
- 将nums1数组转化为哈希表
- 遍历nums2数组,比较哈希表中是否存在,若存在,将其存放到结果set中
unordered_set 可以去重
代码
1. 数组
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
int nums[1000]={0};
vector<int> ans;
for(int i=0;i<nums1.size();i++)
nums[nums1[i]]++;
for(int i=0;i<nums2.size();i++)
if(nums[nums2[i]]!=0){
ans.push_back(nums2[i]);
nums[nums2[i]]=0;
}
return ans;
}
};
2. set
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
unordered_set<int> result_set;
unordered_set<int> nums_set(nums1.begin(),nums1.end());
for(int i=0;i<nums2.size();i++){
if(nums_set.find(nums2[i])!=nums_set.end())
result_set.insert(nums2[i]);
}
return vector<int>(result_set.begin(),result_set.end());
}
};
- 时间复杂度
O(n)
- 空间复杂度
O(n)
直接使用set 不仅占用空间比数组大,而且速度要比数组慢,set把数值映射到key上都要做hash计算的。
202.快乐数
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果 可以变为 1,那么这个数就是快乐数。
如果 n 是快乐数就返回 True ;不是,则返回 False 。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nuneXzlp-1669034108226)(https://cdn.nlark.com/yuque/0/2022/png/2495891/1669028172710-8e05b68f-7ee8-4833-b736-9ef51eb25c83.png)]
思路
关键:如果不是快乐数,那么求和的结果数字会重复出现(原因见力扣)
1. 哈希法
- 数位分离求平方和
- 如果下一个数字不在哈希集合中,添加它,反之意味处于一个循环中,返回false
2. 双指针法
- fast每次走两步,slow每次走一步,必然会在环中相遇
- 此时,判断是不是因为 1 引起的循环,是的话就是快乐数,否则不是快乐数
3. 数学
- 只有一个循环:4→16→37→58→89→145→42→20→44,所有其他数字都在进入这个循环的链上,或者在进入 1的链上。
代码
1.哈希法
class Solution {
public:
int getSum(int n){
int sum=0;
while(n){
sum+=(n%10)*(n%10);
n/=10;
}
return sum;
}
bool isHappy(int n) {
unordered_set<int> set;
while(1){
int sum=getSum(n);
if(sum==1) return true;
if(set.find(sum)!=set.end())
return false;
else
set.insert(sum);
n=sum;
}
}
};
- 时间复杂度
O(logn)
- 空间复杂度
O(logn)
2. 双指针法
class Solution {
public:
int getSum(int n){
int sum=0;
while(n){
sum+=(n%10)*(n%10);
n/=10;
}
return sum;
}
bool isHappy(int n) {
int slow=n,fast=n;
do{
slow=getSum(slow);
fast=getSum(getSum(fast));
}while(slow!=fast);
return slow==1;
}
};
- 时间复杂度
O(logn)
- 空间复杂度
O(1)
1. 两数之和
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
思路
1. 暴力法
2. 哈希表
- 使用哈希法的时机:查询一个元素是否出现过,或者一个元素是否在集合中
- key value结构,key存放元素,value存放下标->使用map
- map用来存放遍历过的元素
- 寻找
**target-nums[i]**
是否出现过
代码
1. 暴力法
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
vector<int> ans;
for(int i=0;i<nums.size();i++){
for(int j=i+1;j<nums.size();j++)
if(nums[i]+nums[j]==target){
ans.push_back(i);
ans.push_back(j);
}
}
return ans;
}
};
- 时间复杂度
O(n^2)
- 空间复杂度
O(1)
2. 哈希法
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map <int,int> map;
for(int i=0;i<nums.size();i++){
auto iter=map.find(target-nums[i]);
if(iter!=map.end())
return {i,iter->second};
map.insert(pair<int, int>(nums[i],i));
}
return {};
}
};
- 时间复杂度
O(n)
- 空间复杂度
O(n)