24.两两交换链表中的节点
给定一个链表,两两交换其中相邻的节点,并返回交换后的链表。
你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换。
思路
- 我的方法(和力扣相同,但力扣节省了交换两个指针位置的第二步,在移动指针时直接重新赋值两指针)
cur1
cur2
分别指向要交换的两个结点,交换两个结点
- 交换两个指针的位置
- 将指针向后移动两位
注意:循环跳出条件
- 代码随想录
- 两个临时指针的位置与上述不同
- 递归(力扣精选的思路)
- 返回值:交换完成的子链表
- 调用单元:设需要交换的两个点为 head 和 next,head 连接后面交换完成的子链表,next 连接 head,完成交换
- 终止条件:head 为空指针或者 next 为空指针,也就是当前无节点或者只有一个节点,无法进行交换
代码
1. 我的方法
class Solution {
public:
void print(ListNode* dummyHead){
ListNode *p=dummyHead->next;
while(p){
cout<<p->val<<" ";
p=p->next;
}
cout<<endl;
}
ListNode* swapPairs(ListNode* head) {
if(head==NULL) return NULL;
ListNode *dummyHead=new ListNode(0);
dummyHead->next=head; //虚拟头结点
ListNode *cur=dummyHead;
ListNode *cur1=dummyHead->next;
ListNode *cur2=cur1->next;
while(cur1!=NULL&&cur2!=NULL){
//交换两个结点位置
cur1->next=cur2->next;
cur2->next=cur1;
cur->next=cur2;
print(dummyHead);
//复原两个指针指向的位置
ListNode *temp;
temp=cur2;
cur2=cur1;
cur1=temp;
//将指针往后移动两位
if(cur2->next!=NULL){
cur=cur2;
cur1=cur2->next;
cur2=cur2->next->next;
}
else{
break;
}
}
return dummyHead->next;
}
};
2. 力扣
class Solution {
public:
ListNode* swapPairs(ListNode* head) {
if(head==NULL) return NULL;
ListNode *dummyHead=new ListNode(0);
dummyHead->next=head; //虚拟头结点
ListNode *cur=dummyHead;
while(cur->next!=NULL&&cur->next->next!=NULL){
ListNode *cur1=cur->next;
ListNode *cur2=cur->next->next;
//交换两个结点位置
cur1->next=cur2->next;
cur2->next=cur1;
cur->next=cur2;
//指针向后移动两位
cur=cur->next->next;
}
return dummyHead->next;
}
};
复杂度分析
- 时间复杂度
O(n)
- 空间复杂度
O(1)
3. 递归
class Solution {
public:
ListNode* swapPairs(ListNode* head) {
if(head==NULL||head->next==NULL) return head; //交换完成
ListNode *newHead=head->next;
ListNode *three=newHead->next;
newHead->next=head;
head->next=swapPairs(three);
return newHead;
}
};
复杂度分析
- 时间复杂度
O(n)
- 空间复杂度
O(n)
19.删除链表的倒数第N个节点
给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。
进阶:你能尝试使用一趟扫描实现吗?
思路
- 双指针(我的方法)
fast
指针与slow
指针相隔n
个节点->slow
指向待删除结点的前驱结点
- 计算链表长度
- 遍历链表,得到链表长度
L
- 再次遍历链表,遍历到第
L-n+1
个节点时,删除该结点
- 栈
- 遍历链表同时将所有节点依次入栈(要将头结点入栈,避免无法获取第一个节点的前驱结点)
- 弹出栈的第n个节点就是待删除结点,且当前栈顶结点是该结点的前驱结点
代码
- 双指针
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
ListNode *dummyHead=new ListNode(0);
dummyHead->next=head; //虚拟头结点
ListNode *slow=dummyHead; //倒数第n个结点的前一个结点
ListNode *fast=dummyHead;
//控制slow和fast相差n个结点
while(n--){
fast=fast->next;
}
while(fast->next!=NULL){
slow=slow->next;
fast=fast->next;
}
ListNode *temp=slow->next;
slow->next=slow->next->next;
delete temp;
return dummyHead->next;
}
};
- 时间复杂度
O(L)
,L为链表长度 - 空间复杂度
O(1)
- 栈
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
ListNode* dummyHead = new ListNode(0);
dummyHead->next=head;
stack<ListNode*> stk;
ListNode *cur=dummyHead;//要将头结点入栈,避免无法获取第一个节点的前驱结点
while(cur){
stk.push(cur);
cur=cur->next;
}
while(n--){
stk.pop();
}
ListNode *temp=stk.top();
cur=temp->next;
temp->next=temp->next->next;
delete cur;
return dummyHead->next;
}
};
- 时间复杂度
O(L)
- 空间复杂度
O(L)
02.07.链表相交
给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。
图示两个链表在节点 c1 开始相交:
题目数据 保证 整个链式结构中不存在环。
注意,函数返回结果后,链表必须 保持其原始结构 。
思路
- 我的解法(同代码随想录)
- 分别遍历两表,计算两表长度
- 两表长度作差,让长表指针先根据差值移动到短表头结点对齐的位置
- 同时移动两个指针,比较是否有相同结点
- 力扣解法(双指针)
-
当有一个表为空时,说明肯定不相交,返回NULL
-
当两表都不为空时,
pA
和pB
同时操作若
pA
不为空,则将pA
移动到下一个结点,若为空,则移动到headB
的头结点;若
pB
不为空,则将pB
移动到下一个结点,若为空,则移动到headA
的头结点;当两个指针指向同一个结点或都为空时,返回它们指向的结点或者空
-
数学原理
headA和headB的长度分别是m和n,假设headA的不相交部分有a个结点,headB的不相交部分有b个结点,相交部分有c个结点,则有a+c=m,b+c=n
若两链表相交:
如果a==b,则同时到达相交结点,返回相交结点;
如果a!=b,两个指针分别会移动a+c+b、b+c+a次,此时会指向同一个结点
若不相交:
会指向同一个空结点
代码
- 我的解法
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
int sizeA=0; //A链表的长度
int sizeB=0; //B链表的长度
ListNode *cur1=headA;
ListNode *cur2=headB;
//计算A、B链表的长度
while(cur1){
sizeA++;
cur1=cur1->next;
}
while(cur2){
sizeB++;
cur2=cur2->next;
}
cur1=headA;
cur2=headB;
int differ=sizeA-sizeB;
if(differ>0){
while(differ--) cur1=cur1->next;
}
else{
while(differ++<0) cur2=cur2->next;
}
while(cur1&&cur2){
if(cur1==cur2) return cur1;
else{
cur1=cur1->next;
cur2=cur2->next;
}
}
return NULL;
}
};
- 时间复杂度
O(m+n)
- 空间复杂度
O(1)
- 力扣解法(双指针)
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
ListNode *pA=headA,*pB=headB;
if(pA==NULL||pB==NULL) return NULL;
while(pA!=pB){
pA=pA==NULL?headB:pA->next;
pB=pB==NULL?headA:pB->next;
}
return pA;
}
};
- 时间复杂度
O(m+n)
- 空间复杂度
O(1)
142.环形链表II
题意: 给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。
说明:不允许修改给定的链表。
思路
- 我的解法
- 使用指针数组存储已遍历的结点,一旦再次遇到了遍历过的节点,就可以判定链表中存在环。
- 哈希法
- 使用哈希表存储已遍历的结点
- 双指针法
- 判断链表是否有环
- 如何找到环的入口
1.判断链表是否有环
-
fast每次走两步,slow每次走一步,必然会在环中相遇
->因为fast移动速度比slow快,相对于slow来说,fast不断靠近slow,所以fast一定可以和slow重合
2.如何找到环的入口
- 从头结点出发一个指针,从相遇节点也出发一个指针,这两个指针每次只走一个节点,那么当这两个指针相遇的时候就是环形入口的节点。
数学原理(代码随想录中部分解答)
相遇时: slow指针走过的节点数为: x + y, fast指针走过的节点数:x + y + n (y + z),n为fast指针在环内走了n圈才遇到slow指针, (y+z)为一圈内节点的个数A。
因为fast指针是一步走两个节点,slow指针一步走一个节点, 所以 fast指针走过的节点数 = slow指针走过的节点数 * 2:(x + y) * 2 = x + y + n (y + z)
两边消掉一个(x+y): x + y = n (y + z)
因为要找环形的入口,那么要求的是x,因为x表示头结点到环形入口节点的的距离。
所以要求x ,将x单独放在左面:x = n (y + z) - y ,
再从n(y+z)中提出一个 (y+z)来,整理公式之后为如下公式:x = (n - 1) (y + z) + z 注意这里n一定是大于等于1的,因为 fast指针至少要多走一圈才能相遇slow指针。
先拿n为1的情况来举例,意味着fast指针在环形里转了一圈之后,就遇到了 slow指针了。
当 n为1的时候,公式就化解为 x = z
这就意味着,从头结点出发一个指针,从相遇节点也出发一个指针,这两个指针每次只走一个节点,那么当这两个指针相遇的时候就是 环形入口的节点。
解释
-
为什么 fast指针至少要多走一圈才能相遇slow指针
一圈没走完就相遇->链表没环也能相遇->矛盾
-
为什么会在slow跑不完一圈就与fast相遇(力扣评论区的优质解答)
一:
假设圈长L
slow进入环的时候,假设fast距离它n步(n<L)
fast一次走两步,slow一次走一步,所以每走一次,它们的距离会缩短1;
那么它们的距离会从n变为n-1,n-2,n-2…1,0;即不可能只超越而不相遇;
这个过程种slow走了n步,而n<L,即slow用不了一圈就会被追上
二:
(极限思想) 假设他们都是从入环点开始跑的,那么当慢指针刚好跑完一圈时,快指针刚好跑完两圈,也是在一圈的末尾追上慢指针。而现实情况往往是在慢指针到入环处时快指针已经入环并走了了,所以实际情况一定会在第一圈之内相遇。
代码
- 我的解法
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode *cur=head;
if(cur==NULL||cur->next==NULL) return NULL;
ListNode *p[100000];
int count=0;
bool flag=true;
while(cur->next&&flag){
p[count++]=cur;
cur=cur->next;
for(int i=0;i<count;i++){
if(cur->next==p[i]){
flag=false;
return p[i];
}
}
}
return NULL;
}
};
- 时间复杂度
O(n)
- 空间复杂度
O(n)
- 哈希法
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
unordered_set<ListNode *> visited;
while(head!=NULL){
if(visited.count(head))
return head;
visited.insert(head);
head=head->next;
}
return NULL;
}
};
- 时间复杂度
O(n)
- 空间复杂度
O(n)
- 双指针法
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode *slow=head;
ListNode *fast=head;
while(fast!=NULL&&fast->next!=NULL){
fast=fast->next->next;
slow=slow->next;
if(fast==slow){ //两个结点相遇
ListNode *index1=fast;
ListNode *index2=head;
while(index1!=index2){
index1=index1->next;
index2=index2->next;
}
return index1;
}
}
return NULL;
}
};
- 时间复杂度
O(n)
- 空间复杂度
O(1)