代码随想录算法训练营第四天|24.两两交换链表中的节点,19.删除链表的倒数第N个节点,02.07.链表相交,142.环形链表II

24.两两交换链表中的节点

力扣题目链接

给定一个链表,两两交换其中相邻的节点,并返回交换后的链表。

你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换

思路

  1. 我的方法(和力扣相同,但力扣节省了交换两个指针位置的第二步,在移动指针时直接重新赋值两指针)
  • cur1 cur2分别指向要交换的两个结点,交换两个结点

img

  • 交换两个指针的位置

img

  • 将指针向后移动两位

注意:循环跳出条件

  1. 代码随想录
  • 两个临时指针的位置与上述不同

img

  1. 递归(力扣精选的思路)
  • 返回值:交换完成的子链表
  • 调用单元:设需要交换的两个点为 head 和 next,head 连接后面交换完成的子链表,next 连接 head,完成交换
  • 终止条件:head 为空指针或者 next 为空指针,也就是当前无节点或者只有一个节点,无法进行交换

代码

1. 我的方法
class Solution {
public:
    void print(ListNode* dummyHead){
        ListNode *p=dummyHead->next;
        while(p){
            cout<<p->val<<" ";
            p=p->next;
        }
        cout<<endl;
    }
    ListNode* swapPairs(ListNode* head) {
        if(head==NULL) return NULL;
        ListNode *dummyHead=new ListNode(0);
        dummyHead->next=head; //虚拟头结点
        ListNode *cur=dummyHead;
        ListNode *cur1=dummyHead->next;
        ListNode *cur2=cur1->next;
        while(cur1!=NULL&&cur2!=NULL){
            //交换两个结点位置
            cur1->next=cur2->next;
            cur2->next=cur1;
            cur->next=cur2;
            print(dummyHead);
            //复原两个指针指向的位置
            ListNode *temp;
            temp=cur2;
            cur2=cur1;
            cur1=temp;
            //将指针往后移动两位
            if(cur2->next!=NULL){
                cur=cur2;
                cur1=cur2->next;
                cur2=cur2->next->next;
            }
            else{
                break;
            }
            
        }
        return dummyHead->next;
    }
};
2. 力扣
class Solution {
public:
    ListNode* swapPairs(ListNode* head) {
        if(head==NULL) return NULL;
        ListNode *dummyHead=new ListNode(0);
        dummyHead->next=head; //虚拟头结点
        ListNode *cur=dummyHead;
        while(cur->next!=NULL&&cur->next->next!=NULL){
            ListNode *cur1=cur->next;
            ListNode *cur2=cur->next->next;
            //交换两个结点位置
            cur1->next=cur2->next;
            cur2->next=cur1;
            cur->next=cur2;
            //指针向后移动两位
            cur=cur->next->next;
        }
        return dummyHead->next;
    }
};

复杂度分析

  • 时间复杂度O(n)
  • 空间复杂度O(1)
3. 递归
class Solution {
public:
    ListNode* swapPairs(ListNode* head) {
        if(head==NULL||head->next==NULL) return head; //交换完成
        ListNode *newHead=head->next;
        ListNode *three=newHead->next;
        newHead->next=head;
        head->next=swapPairs(three);
        return newHead;
    }
};

复杂度分析

  • 时间复杂度O(n)
  • 空间复杂度O(n)

19.删除链表的倒数第N个节点

力扣题目链接

给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。

进阶:你能尝试使用一趟扫描实现吗?

思路

  1. 双指针(我的方法)
  • fast指针与slow指针相隔n个节点->slow指向待删除结点的前驱结点
  1. 计算链表长度
  • 遍历链表,得到链表长度L
  • 再次遍历链表,遍历到第L-n+1个节点时,删除该结点
  • 遍历链表同时将所有节点依次入栈(要将头结点入栈,避免无法获取第一个节点的前驱结点)
  • 弹出栈的第n个节点就是待删除结点,且当前栈顶结点是该结点的前驱结点

代码

  1. 双指针
class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        ListNode *dummyHead=new ListNode(0);
        dummyHead->next=head; //虚拟头结点
        ListNode *slow=dummyHead; //倒数第n个结点的前一个结点
        ListNode *fast=dummyHead;
        //控制slow和fast相差n个结点
        while(n--){ 
            fast=fast->next;
        }
        while(fast->next!=NULL){
            slow=slow->next;
            fast=fast->next;
        }
        ListNode *temp=slow->next;
        slow->next=slow->next->next;
        delete temp;
        return dummyHead->next;
    }
};
  • 时间复杂度O(L),L为链表长度
  • 空间复杂度O(1)
class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        ListNode* dummyHead = new ListNode(0);
        dummyHead->next=head;
        stack<ListNode*> stk;
        ListNode *cur=dummyHead;//要将头结点入栈,避免无法获取第一个节点的前驱结点
        while(cur){
            stk.push(cur);
            cur=cur->next;
        }
        while(n--){
            stk.pop();
        }
        ListNode *temp=stk.top();
        cur=temp->next;
        temp->next=temp->next->next;
        delete cur;
        return dummyHead->next;
    }
};
  • 时间复杂度O(L)
  • 空间复杂度O(L)

02.07.链表相交

力扣题目链接

给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。

图示两个链表在节点 c1 开始相交:

img

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构 。

思路

  1. 我的解法(同代码随想录)
  • 分别遍历两表,计算两表长度
  • 两表长度作差,让长表指针先根据差值移动到短表头结点对齐的位置
  • 同时移动两个指针,比较是否有相同结点
  1. 力扣解法(双指针)
  • 当有一个表为空时,说明肯定不相交,返回NULL

  • 当两表都不为空时,pApB同时操作

    pA不为空,则将pA移动到下一个结点,若为空,则移动到headB的头结点;

    pB不为空,则将pB移动到下一个结点,若为空,则移动到headA的头结点;

    当两个指针指向同一个结点或都为空时,返回它们指向的结点或者空

  • 数学原理

    headA和headB的长度分别是m和n,假设headA的不相交部分有a个结点,headB的不相交部分有b个结点,相交部分有c个结点,则有a+c=m,b+c=n

    若两链表相交:

    如果a==b,则同时到达相交结点,返回相交结点;

    如果a!=b,两个指针分别会移动a+c+b、b+c+a次,此时会指向同一个结点

    若不相交:

    会指向同一个空结点

代码

  1. 我的解法
class Solution {
public:
    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
        int sizeA=0; //A链表的长度
        int sizeB=0; //B链表的长度
        ListNode *cur1=headA;
        ListNode *cur2=headB;
        //计算A、B链表的长度
        while(cur1){
            sizeA++;
            cur1=cur1->next;
        }
        while(cur2){
            sizeB++;
            cur2=cur2->next;
        }
        cur1=headA;
        cur2=headB;
        int differ=sizeA-sizeB;
        if(differ>0){
            while(differ--) cur1=cur1->next;
        }
        else{
            while(differ++<0) cur2=cur2->next;
        }
        while(cur1&&cur2){
            if(cur1==cur2) return cur1;
            else{
                cur1=cur1->next;
                cur2=cur2->next;
            }
        }
        return NULL;
    }
};
  • 时间复杂度O(m+n)
  • 空间复杂度O(1)
  1. 力扣解法(双指针)
class Solution {
public:
    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
        ListNode *pA=headA,*pB=headB;
        if(pA==NULL||pB==NULL) return NULL;
        while(pA!=pB){
            pA=pA==NULL?headB:pA->next;
            pB=pB==NULL?headA:pB->next;
        }
        return pA;
    }
};
  • 时间复杂度O(m+n)
  • 空间复杂度O(1)

142.环形链表II

力扣题目链接

题意: 给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

为了表示给定链表中的环,使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。

说明:不允许修改给定的链表。

img

思路

  1. 我的解法
  • 使用指针数组存储已遍历的结点,一旦再次遇到了遍历过的节点,就可以判定链表中存在环。
  1. 哈希法
  • 使用哈希表存储已遍历的结点
  1. 双指针法
  • 判断链表是否有环
  • 如何找到环的入口

1.判断链表是否有环

  • fast每次走两步,slow每次走一步,必然会在环中相遇

    ->因为fast移动速度比slow快,相对于slow来说,fast不断靠近slow,所以fast一定可以和slow重合

2.如何找到环的入口

  • 从头结点出发一个指针,从相遇节点也出发一个指针,这两个指针每次只走一个节点,那么当这两个指针相遇的时候就是环形入口的节点。

数学原理(代码随想录中部分解答)

img

相遇时: slow指针走过的节点数为: x + y, fast指针走过的节点数:x + y + n (y + z),n为fast指针在环内走了n圈才遇到slow指针, (y+z)为一圈内节点的个数A。

因为fast指针是一步走两个节点,slow指针一步走一个节点, 所以 fast指针走过的节点数 = slow指针走过的节点数 * 2:(x + y) * 2 = x + y + n (y + z)

两边消掉一个(x+y): x + y = n (y + z)

因为要找环形的入口,那么要求的是x,因为x表示头结点到环形入口节点的的距离。

所以要求x ,将x单独放在左面:x = n (y + z) - y ,

再从n(y+z)中提出一个 (y+z)来,整理公式之后为如下公式:x = (n - 1) (y + z) + z 注意这里n一定是大于等于1的,因为 fast指针至少要多走一圈才能相遇slow指针。

先拿n为1的情况来举例,意味着fast指针在环形里转了一圈之后,就遇到了 slow指针了。

当 n为1的时候,公式就化解为 x = z

这就意味着,从头结点出发一个指针,从相遇节点也出发一个指针,这两个指针每次只走一个节点,那么当这两个指针相遇的时候就是 环形入口的节点。

解释

  1. 为什么 fast指针至少要多走一圈才能相遇slow指针

    一圈没走完就相遇->链表没环也能相遇->矛盾

  2. 为什么会在slow跑不完一圈就与fast相遇(力扣评论区的优质解答)

一:

​ 假设圈长L

​ slow进入环的时候,假设fast距离它n步(n<L)

​ fast一次走两步,slow一次走一步,所以每走一次,它们的距离会缩短1;

​ 那么它们的距离会从n变为n-1,n-2,n-2…1,0;即不可能只超越而不相遇;

​ 这个过程种slow走了n步,而n<L,即slow用不了一圈就会被追上

二:

​ (极限思想) 假设他们都是从入环点开始跑的,那么当慢指针刚好跑完一圈时,快指针刚好跑完两圈,也是在一圈的末尾追上慢指针。而现实情况往往是在慢指针到入环处时快指针已经入环并走了了,所以实际情况一定会在第一圈之内相遇。

代码

  1. 我的解法
class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        ListNode *cur=head;
        if(cur==NULL||cur->next==NULL) return NULL;
        ListNode *p[100000];
        int count=0;
        bool flag=true;
        while(cur->next&&flag){
            p[count++]=cur;
            cur=cur->next;
            for(int i=0;i<count;i++){
                if(cur->next==p[i]){
                    flag=false;
                    return p[i];
                }
            }
        }
        return NULL;

    }
};
  • 时间复杂度O(n)
  • 空间复杂度O(n)
  1. 哈希法
class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        unordered_set<ListNode *> visited;
        while(head!=NULL){
            if(visited.count(head))
                return head;
            visited.insert(head);
            head=head->next;
        }
        return NULL;
    }
};
  • 时间复杂度O(n)
  • 空间复杂度O(n)
  1. 双指针法
class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        ListNode *slow=head;
        ListNode *fast=head;
        while(fast!=NULL&&fast->next!=NULL){
            fast=fast->next->next;
            slow=slow->next;
            if(fast==slow){ //两个结点相遇
                ListNode *index1=fast;
                ListNode *index2=head;
                while(index1!=index2){
                    index1=index1->next;
                    index2=index2->next;
                }
                return index1;
            }
        }
        return NULL;
    }
};
  • 时间复杂度O(n)
  • 空间复杂度O(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值